3D Single Point Imaging Technology for Tracking Multiple Fish

Mohammadmehdi Saberioon, Petr Cisar, Jan Urban

2016

Abstract

Image based tracking like video tracking has shown potential in aquaculture behavioural studies in past decade. Image based tracking is allowing to have higher spatial and temporal resolution in compared to most conventional methods such as hand scoring, tagging and telemetry. They also permit to have more information about the environment rather than other methods. Most studies about trajectory are based on tracking in two dimensional (2D) environments; however, organisms are mostly included in three dimensional (3D) environments which influence ecological interactions extensively. Furthermore, in 2D image analysis, occlusion of fish is a frequent problem for analysis of fish tracking and ultimately their behaviour. Recently, new hardware based on single point 3D imaging technology have been developed which can provide 3D single points in real-time by combining a colour video camera, infrared video camera with an infrared projector. The main objective of this study was to develop a multiple fish tracking system in 3D space based on the current available 3D imaging technology. Developed system could accurately (98%) track multiple Tilapia (Oreochromis niloticus) which was freely swimming in an aquarium. This study contributes to feasibility of new sensors to monitor fish behaviours in 3D space.

References

  1. Atoum, Y., Srivastava, S., and Xiaoming Liu. (2015). Automatic Feeding Control for Dense Aquaculture Fish Tanks. IEEE Signal Processing Letters, 22(8), 1089- 1093.
  2. Beyan, C., and Fisher, R. B. (2013). Detecting abnormal fish trajectories using clustered and labeled data (pp. 1476-1480). Presented at the 20th IEEE International Conference on Image Processing (ICIP), IEEE. http://doi.org/10.1109/ICIP.2013.6738303.
  3. Brown, G. E., Rive, A. C., Ferrari, M. C. O., and Chivers, D. P. (2006). The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behavioral Ecology and Sociobiology, 61(1), 9-16. http://doi.org/10.1007/s00265-006-0232- y.
  4. Cachat, J., Stewart, A., Utterback, E., Hart, P., Gaikwad, S., Wong, K., et al. (2011). Three-Dimensional Neurophenotyping of Adult Zebrafish Behaviour. PLoS ONE, 6(3), e17597. http://doi.org/10.1371/journal. pone.0017597.
  5. Chen, Z., Wong, K.-Y. K., Liu, M., and Schnieders, D. (2011). Single-view reconstruction from an unknown spherical mirror (pp. 2677-2680). Presented at the 18th IEEE International Conference on Image Processing (ICIP 2011), IEEE. http://doi.org/10.1109/ICIP. 2011.6116219.
  6. Delcourt, J., Denoël, M., Ylieff, M., and Poncin, P. (2012). Video multitracking of fish behaviour: a synthesis and future perspectives. Fish and Fisheries, 14(2), 186-204. http://doi.org/10.1111/j.1467-2979.2012.00462.x.
  7. Delcourt, J., Beco, C., Ylieff, M. Y., and Caps, H. (2006). Comparing the EthoVision 2.3 system and a new computerized multitracking prototype system to measure the swimming behaviour in fry fish. Behaviour Research, 38(4), 704-710. http://doi.org/10.3758/ bf03193904.
  8. Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., de Polavieja, G. G., Noldus, L. P. J. J., Pérez-Escudero, A., Perona, P., Straw, A.D., Wikelski, M., Brose, U. (2014). Automated image-based tracking and its application in ecology. Trends in Ecology and Evolution, 29(7), 417-428. http://doi.org/10.1016/j.tree.2014.05.004.
  9. Gokturk, S. B., Yalcin, H., and Bamji, C. (2004). A TimeOf-Flight Depth Sensor - System Description, Issues and Solutions (pp. 35-35). Presented at the Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW 7804., IEEE. http://doi.org/10.1109/CVPR.2004.17.
  10. Horodysky, A. Z., Kerstetter, D. W., Latour, R. J., and Graves, J. E. (2007). Habitat utilization and vertical movements of white marlin (Tetrapturus albidus) released from commercial and recreational fishing gears in the western North Atlantic Ocean: inferences from short duration pop-up archival satellite tags. Fisheries Oceanography, 16(3), 240-256. http://doi.org/10.1111/j.1365-2419.2007.00419.x.
  11. Kanbara, M., Ukita, N., Kidode, M., and Yokoya, N. (2006). 3D Scene Reconstruction from Reflection Images in a Spherical Mirror (Vol. 4, pp. 874-879). Presented at the 18th International Conference on Pattern Recognition (ICPR'06), IEEE. http://doi.org/10.1109/ICPR.2006.32.
  12. Kane, A. S., Salierno, J. D., Gipson, G. T., Molteno, T. C. A., and Hunter, C. (2004). A video-based movement analysis system to quantify behavioural stress responses of fish. Water Research, 38(18), 3993-4001. http://doi.org/10.1016/j.watres.2004.06.028.
  13. Kato, S., Nakagawa, T., Ohkawa, M., Muramoto, K., Oyama, O., Watanabe, A., Nakashima, H., Nemoto, T., Sugitani, K. (2004). A computer image processing system for quantification of zebrafish behaviour. Journal of Neuroscience Methods, 134(1), 1-7. http://doi.org/10.1016/j.jneumeth.2003.09.028.
  14. Khoshelham, K., and Elberink, S. O. (2012). Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, 12(2), 1437-1454. http://doi.org/10.3390/s120201437.
  15. Lee, J.-V., Loo, J.-L., Chuah, Y.-D., Tang, P.-Y., Tan, Y.- C., and Goh, W. J. (2013). The Use of Vision in a Sustainable Aquaculture Feeding System. Research Journal of Applied Science, Engineering and Technology, 6(19), 3658-3669.
  16. Lee, W. P., Osman, M. A., Talib, A. Z., Ogier, J.-M., and Yahya, K. (2014). Tracking Multiple Fish in a Single Tank Using an Improved Particle Filter. In Advances in Computer Science and its Applications (Vol. 279, pp. 799-804). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-41674- 3_114.
  17. Little, E. E., and Finger, S. E. (1990). Swimming behaviour as an indicator of sublethal toxicity in fish. Environmental Toxicology and Chemistry, 9(1), 13-19. http://doi.org/10.1002/etc.5620090103.
  18. Mancera, J. M., Vargas-Chacoff, L., García-López, A., Kleszczynska, A., Kalamarz, H., Martínez-Rodríguez, G., and Kulczykowska, E. (2008). High density and food deprivation affect arginine vasotocin, isotocin and melatonin in gilthead sea bream (Sparus auratus). Comparative Biochemistry and Physiology Part a: Molecular and Integrative Physiology, 149(1), 92-97. http://doi.org/10.1016/j.cbpa.2007.10.016.
  19. Masud, S., Singh, I. J., and Ram, R. N. (2005). Behavioural and hematological responses of Cyprinus carpio exposed to mercurial chloride. Journal of Environmental Biology / Academy of Environmental Biology, India, 26(2 Suppl), 393-397.
  20. Matsumoto, J., Urakawa, S., Takamura, Y., Malcher-Lopes, R., Hori, E., Tomaz, C., et al. (2013). A 3D-VideoBased Computerized Analysis of Social and Sexual Interactions in Rats. PLoS ONE, 8(10), e'460. http://doi.org/10.1371/journal.pone.0078460.
  21. Mirat, O., Sternberg, J. R., Severi, K. E., & Wyart, C. (2013). ZebraZoom: an automated program for highthroughput behavioral analysis and categorization. Frontiers in Neural Circuits, 7, 1-12. http://doi.org/10.3389/fncir.2013.00107.
  22. Moreira, P. S. A., and Volpato, G. L. (2004). Conditioning of stress in Nile tilapia. Journal of Fish Biology, 64(4), 961-969. http://doi.org/10.1111/j.1095-8649.2004. 00362.x.
  23. Oppedal, F., Dempster, T., and Stien, L. H. (2011). Environmental drivers of Atlantic salmon behaviour in sea-cages: A review. Aquaculture, 311(1-4), 1-18. http://doi.org/10.1016/j.aquaculture.2010.11.020.
  24. Papadakis, V. M., Papadakis, I. E., Lamprianidou, F., Glaropoulos, A., and Kentouri, M. (2012). A computervision system and methodology for the analysis of fish behaviour. Aquacultural Engineering, 46, 53-59. http://doi.org/10.1016/j.aquaeng.2011.11.002.
  25. Parsonage, K. D., and Petrell, R. J. (2003). Accuracy of a machine-vision pellet detection system. Aquacultural Engineering, 29(3-4), 109-123. http://doi.org/10.1016/ S0144-8609(03)00049-9.
  26. Pawar, S., Dell, A. I., and Savage, V. M. (2012). Dimensionality of consumer search space drives trophic interaction strengths. Nature, 486(7404), 485- 489. http://doi.org/10.1038/nature11131.
  27. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., and de Polavieja, G. G. (2014). idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nature Methods, 11(7), 743-748. http://doi.org/10.1038/nmeth.2994.
  28. Pinkiewicz, T. H., Purser, G. J., and Williams, R. N. (2011). A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: A case study using cage-held Atlantic salmon. Aquacultural Engineering, 45(1), 20-27. http://doi.org/10.1016/j.aquaeng.2011.05.002.
  29. Salierno, J. D., Gipson, G. T., and Kane, A. S. (2007). Quantitative movement analysis of social behaviour in mummichog, Fundulus heteroclitus. Journal of Ethology, 26(1), 35-42. http://doi.org/10.1007/s10164- 006-0027-7.
  30. Schramm, M., (2010) Kinect: the company behind the tech explain how it works. http://www.engadget.com/2010/ 06/19/kinect-how-it-works-from-the-company-behindthe-tech/. Retrieved 11 April 2015.
  31. Smisek, J., Jancosek, M., and Pajdla, T. (2011). 3D with Kinect (pp. 1154-1160). Presented at the IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE. http://doi.org/10.1109/ICCVW.2011.6130380.
  32. Spitzen, J., Spoor, C. W., Grieco, F., Braak, ter, C., Beeuwkes, J., van Brugge, S. P., et al. (2013). A 3D Analysis of Flight Behaviour of Anopheles gambiae sensu stricto Malaria Mosquitoes in Response to Human Odor and Heat. PLoS ONE, 8(5), e62995. http://doi.org/10.1371/journal.pone.0062995.
  33. Stewart, A. M., Gaikwad, S., Kyzar, E., and Kalueff, A. V. (2012). Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Research, 1451, 44-52. http://doi.org/10.1016/ j.brainres.2012.02.064.
  34. Suzuki, K., Takagi, T., and Hiraishi, T. (2003). Video analysis of fish schooling behaviour in finite space using a mathematical model. Fisheries Research, 60(1), 3-10. http://doi.org/10.1016/S0165-7836(02)00081-4.
  35. Tang, L., Tian, L., and Steward, B. L. (2003). Classification of broadleaf and grass weeds using gabor wavelets and an artificial neural network. Transactions of the ASAE, 46(4), 1247-1254. http://doi.org/10.13031/ 2013.13944.
  36. Torisawa, S., Kadota, M., Komeyama, K., Suzuki, K., and Takagi, T. (2011). A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage. Aquatic Living Resources, 24(2), 107-112. http://doi.org/10.1051/alr/2011133.
  37. Veeraraghavan, A., Srinivasan, M., Chellappa, R., Baird, E., and Lamont, R. (2006). Motion Based Correspondence for 3D Tracking of Multiple Dim Objects (Vol. 2, pp. II-669-II-672). Presented at the 2006 IEEE International Conference on Acoustics Speed and Signal Processing, IEEE. http://doi.org/10.1109/ICASSP.2006.1660431.
  38. Viscido, S. V., Parrish, J. K., and Grünbaum, D. (2004). Individual behaviour and emergent properties of fish schools: a comparison of observation and theory. Marine Ecology Progress Series, 273, 239-249. http://doi.org/10.3354/meps273239.
  39. Wu, H. S., Zhao, Q., Zou, D., and Chen, Y. Q. (2011). Automated 3D trajectory measuring of large numbers of moving particles. Optics Express, 19(8), 7646-7663. http://doi.org/10.1364/OE.19.007646.
  40. Xiao, G., Feng, M., Cheng, Z., Zhao, M., Mao, J., and Mirowski, L. (2015). Water quality monitoring using abnormal tail-beat frequency of crucian carp. Ecotoxicology and Environmental Safety, 111, 185- 191. http://doi.org/10.1016/j.ecoenv.2014.09.028.
  41. Xu, J., Liu, Y., Cui, S., and Miao, X. (2006). Behavioural responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision. Aquacultural Engineering, 35(3), 207-217. http://doi.org/10.1016/j.aquaeng.2006.02.0 04.
  42. Zion, B. (2012). The use of computer vision technologies in aquaculture-A review. Computers and Electronics in Agriculture, 88(C), 125-132. http://doi.org/10.1016/ j.compag.2012.07.010.
Download


Paper Citation


in Harvard Style

Saberioon M., Cisar P. and Urban J. (2016). 3D Single Point Imaging Technology for Tracking Multiple Fish . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 115-121. DOI: 10.5220/0005634001150121


in Bibtex Style

@conference{biosignals16,
author={Mohammadmehdi Saberioon and Petr Cisar and Jan Urban},
title={3D Single Point Imaging Technology for Tracking Multiple Fish},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={115-121},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005634001150121},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - 3D Single Point Imaging Technology for Tracking Multiple Fish
SN - 978-989-758-170-0
AU - Saberioon M.
AU - Cisar P.
AU - Urban J.
PY - 2016
SP - 115
EP - 121
DO - 10.5220/0005634001150121