Bridging the Gap between Knowledge Representation and Electronic Health Records

Roberto Gatta, Mauro Vallati, Carlo Cappelli, Berardino De Bari, Massimo Salvetti, Silvio Finardi, Maria Lorenza Muiesan, Vincenzo Valentini, Maurizio Castellano

2016

Abstract

Decision Support Systems (DSSs) are systems that supports decision-making activities. Their application in medical domain needs to face the critical issue of retrieving information from heterogeneous existing data sources, such as Electronic Health Records (EHRs). It is well-known that there exists a huge problem of standardisation. In fact, EHRs can represent the same knowledge in many different ways. It is evident that the applicability of DSSs strongly relies on the availability of homogeneous collections of data. On the other hand, the gap between DSSs and different EHRs can be bridged by exploiting middleware technologies. In this paper, we tested CSL, a technology designed for working as a middleware between DSS and EHRs, which is able to combine data taken from different EHR sources and to provide abstract and homogeneous data to DSSs. Moreover, CSL has been used for implementing three Clinical Guidelines, in order to test its capability in representing complex work-flows. The performed analysis highlight strengths and limitations of the proposed approach.

References

  1. Hripcsak, G. (1994). Writing arden syntax medical logic modules. Computers in biology and medicine, 24(5):331-363.
  2. Mulyar, N., vanderAalst, W. M., and Peleg, M. (2007). A pattern-based analysis of clinical computerinterpretable guideline modeling languages. J Am Med Inform Assoc, 14(6):781-787.
  3. Ohno-Machado, L., Gennari, J. H., Murphy, S. N., Jain, N. L., Tu, S. W., Oliver, D. E., Pattison-Gordon, E., Greenes, P. A., and E. H. Shortliffe, G. O. B. (1998). The guideline interchange format: a model for representing guidelines. J Am Med Inform Assoc., 5(4):357-372.
  4. Pacini, F., Schlumberger, M., Dralle, H., Elisei, R., Smit, J. W., and Wiersinga, W. (2006). European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. european thyroid cancer taskforce. Eur J Endocrinol, 154(6):787-803.
  5. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R. A., Hall, R., Johnson, P. D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E. H., and Stefanelli, M. (2003). Comparing computer-interpretable guideline models: a casestudy approach. J Am Med Inform Assoc, 10(1):52- 68.
  6. Poikonen, J. (1997). Arden syntax: the emerging standard language for representing medical knowledge in computer systems. Am J Health Syst Pharm, 54(3):281- 284.
  7. Quaglini, S., Stefanelli, M., Lanzola, G., Caporusso, V., and Panzarasa, S. (2001). Flexible guideline-based patient careflow systems. Artif Intell Med, 22(1):65-80.
  8. Roldán-García, M., Navas-Delgado, I., Kerzazi, A., Chniber, O., Molina-Castro, J., and Aldana-Montes, J. F. (2009). Ka-sb: from data integration to large scale reasoning. BMC Bioinformatics, 1(10):10-S5.
  9. Shahar, Y., Miksch, S., and Johnson, P. (1998). The asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif Intell Med, 14(1-2):29-51.
  10. Sordo, M., Ogunyemi, O., Boxwala, A. A., and Greenes, R. A. (2003). Gello: an object-oriented query and expression language for clinical decision support. AMIA Annu Symp Proc, page 1012.
  11. Sujansky, W. and Altman, R. (1996). An evaluation of the transfer model for sharing clinical decision-support applications. Proc AMIA Annu Fall Symp, pages 498- 472, Washington, D.C., Hanley & Belfus.
  12. Ye, Y., Jiang, Z., Diao, X., Yang, D., and Du, G. (2009). An ontology-based hierarchical semantic modeling approach to clinical pathway workflows. Comput Biol Med, 39(8):722-732.
Download


Paper Citation


in Harvard Style

Gatta R., Vallati M., Cappelli C., De Bari B., Salvetti M., Finardi S., Muiesan M., Valentini V. and Castellano M. (2016). Bridging the Gap between Knowledge Representation and Electronic Health Records . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 159-165. DOI: 10.5220/0005648801590165


in Bibtex Style

@conference{healthinf16,
author={Roberto Gatta and Mauro Vallati and Carlo Cappelli and Berardino De Bari and Massimo Salvetti and Silvio Finardi and Maria Lorenza Muiesan and Vincenzo Valentini and Maurizio Castellano},
title={Bridging the Gap between Knowledge Representation and Electronic Health Records},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={159-165},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005648801590165},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - Bridging the Gap between Knowledge Representation and Electronic Health Records
SN - 978-989-758-170-0
AU - Gatta R.
AU - Vallati M.
AU - Cappelli C.
AU - De Bari B.
AU - Salvetti M.
AU - Finardi S.
AU - Muiesan M.
AU - Valentini V.
AU - Castellano M.
PY - 2016
SP - 159
EP - 165
DO - 10.5220/0005648801590165