Dynamics of Interacting Bragg Grating Solitons in a Semilinear Dual-core System with Cubic-quintic Nonlinearity

Md Jahirul Islam, Javid Atai

2016

Abstract

The interaction dynamics of in-phase Bragg grating gap solitons in a semilinear dual-core optical waveguide, where one core has cubic-quintic nonlinearity and equipped with Bragg grating and the other is linear, are investigated. The model supports two disjoint families of Bragg grating solitons (referred as Type 1 and Type 2). It is found that the interactions of two stable in-phase ($\Delta\theta=0$) quiescent solitons result in several outcomes. The possible interaction outcomes between two solitons may include symmetric or asymmetric separation, merger into one quiescent or moving soliton, destruction of one or both solitons and the formation of three solitons. It is found that the outcomes of the interactions are dependent upon the strength of quintic nonlinearity ($q$), initial separation ($\Delta x$) of the solitons, coupling-coefficient ($\kappa$) between the cores and the group velocity term ($c$) in the linear core.

References

  1. Aceves, A. B. and Wabnitz, S. (1989). Self induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A, 141:37-42.
  2. Atai, J. (2004). Interaction of bragg grating solitons in a cubic-quintic medium. J. Opt. B Quantum Semiclass., 6:S177-S181.
  3. Atai, J. and Chen, Y. (1992). Nonlinear couplers composed of different nonlinear cores. J. Appl. Phys., 72:24-27.
  4. Atai, J. and Chen, Y. (1993). Nonlinear mismatches between two cores of saturable nonlinear couplers. IEEE J. Quant. Elec., 29:242-249.
  5. Atai, J. and Malomed, B. A. (2000). Bragg-grating solitons in a semilinear dual-core system. Phys. Rev. E, 62:8713-8718.
  6. Atai, J. and Malomed, B. A. (2001). Families of bragggrating solitons in a cubic-quintic medium. Phys. Lett. A, 284:247-252.
  7. Bertolotti, M., Monaco, M., and Sibilia, C. (1995). Role of the asymmetry in a third-order nonlinear directional coupler. Opt. Comm., 116:405-410.
  8. Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smerktala, F., and Sanchez, F. (2003). Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses. Opt. Commun., 219:427-433.
  9. Christadoulides, D. N. and Joseph, R. I. (1989). Slow bragg solitons in nonlinear periodic structures. Phys. Rev. Lett., 62:1746-1749.
  10. Christiansen, P., Sorensen, M., and Scott, A., editors (2000). Nonlinear Science and the Dawn of the 21st Century. Springer, Verlag Berlin Heidelberg New York, 1st edition.
  11. Conti, C., Trillo, S., and Assanto, G. (1997). Doubly resonant bragg simultons via second-harmonic generation. Phys. Rev. Lett., 78:2341-2344.
  12. Dasanayaka, S. and Atai, J. (2013a). Moving bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Rev. E, 88:022921.
  13. Dasanayaka, S. and Atai, J. (2013b). Stability and collisions of moving bragg grating solitons in a cubic-quintic nonlinear medium. J. Opt. Soc. Am. B, 30:396-404.
  14. Desterke, C. M. and Sipe, J. E. (1994). Gap solitons. Progress in Optics, 33:203-260.
  15. Eggleton, B. J., Desterke, C. M., and Slusher, R. E. (1997). Nonlinear pulse propagation in bragg gratings. J. Opt. Soc. Am. B, 14:2980-2993.
  16. Islam, M. J. and Atai, J. (2015). Bragg grating solitons in semilinear dual-core system with cubic-quintic nonlinearity. In International Conference on Photonics, Optics and Laser Technology, Berlin, Germany. INSTICC.
  17. Kashyap, R. (1999). Fiber Bragg Gratings. Academic Press, San Diego.
  18. Lawrence, B. L., Cha, M., Torruellas, W. E., Stegeman, G. I., Etemad, S., Baker, G., and Kajzar, F. (1994). Measurement of the complex nonlinear refractiveindex of single-crystal p-toluene sulfonate at 1064- nm. Appl. Phys. Lett., 64:2773-2775.
  19. Loh, W., Laming, R., Robinson, N., Cavaciuti, A., C. Vaninetti, J. A., Zervis, M., and Cole, M. (1996). Dispersion compensation over distances in excess of 500 km for 10 gb/s systems using chirped fiber gratings. IEEE Photon. Technol. Lett., 8:944-946.
  20. Mak, W. C. K., Malomed, B. A., and Chu, P. L. (1998). Solitary waves in coupled nonlinear waveguides with bragg gratings. J. Opt. Soc. Am. B, 15:1685-1692.
  21. Mak, W. C. K., Malomed, B. A., and Chu, P. L. (2003). Formation of a standing-light pulse through collision of gap solitons. Phys. Rev. E, 68:02669.
  22. Mok, J. T., Desterke, C. M., Litler, I. C. M., and Eggleton, B. J. (2006). Dispersionless slow light using gap solitons. Nat. Phys., 2:775-780.
  23. Neill, D. R. and Atai, J. (2006). Collision dynamics of gap solitons in kerr media. Phys. Lett. A, 353:416-421.
  24. Neill, D. R., Atai, J., and Malomed, B. A. (2007). Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A, 367:73-82.
  25. Nistazakis, H. E., Frantzeskakis, D. J., Atai, J., Malomed, B. A., Efremidis, N., and Hizanidis, K. (2002). Multichannel pulse dynamics in a stabilized ginzburglandau system. Phys. Rev. E, 65:036605.
  26. Radic, S., George, N., and Agrawal, G. P. (1995). Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures. J. Opt. Soc. Am. B, 12:671-680.
  27. Taverner, D., Broderick, N. G. R., Richardson, D. J., Laming, R. I., and Ibsen, M. (1998). Nonlinear selfswitching and multiple gap-soliton formation in a fiber bragg grating. Opt. Lett., 23:328-330.
  28. Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu, Z., Zhao, L., and Nie, Y. (2002). Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B, 19:369-375.
Download


Paper Citation


in Harvard Style

Islam M. and Atai J. (2016). Dynamics of Interacting Bragg Grating Solitons in a Semilinear Dual-core System with Cubic-quintic Nonlinearity . In Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-174-8, pages 227-230. DOI: 10.5220/0005651502270230


in Bibtex Style

@conference{photoptics16,
author={Md Jahirul Islam and Javid Atai},
title={Dynamics of Interacting Bragg Grating Solitons in a Semilinear Dual-core System with Cubic-quintic Nonlinearity},
booktitle={Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2016},
pages={227-230},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005651502270230},
isbn={978-989-758-174-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Dynamics of Interacting Bragg Grating Solitons in a Semilinear Dual-core System with Cubic-quintic Nonlinearity
SN - 978-989-758-174-8
AU - Islam M.
AU - Atai J.
PY - 2016
SP - 227
EP - 230
DO - 10.5220/0005651502270230