Fine-Grained Prediction of Cognitive Workload in a Modern Working Environment by Utilizing Short-Term Physiological Parameters
Timm Hörmann, Marc Hesse, Peter Christ, Michael Adams, Christian Menßen, Ulrich Rückert
2016
Abstract
In this paper we present a method to predict cognitive workload during the interaction with a tablet computer. To set up a predictor that estimates the reflected self-reported cognitive workload we analyzed the information gain of heart rate, electrodermal activity and user input (touch) based features. From the derived optimal feature set we present a Gaussian Process based learner that enables fine-grained and short term detection of cognitive workload. Average inter-subject accuracy in 10-fold cross validation is 74.1 % for the fine-grained 5-class problem and 96.0 % for the binary class problem.
References
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics), chapter Kernel Methods, pages 291-323. Springer New York.
- Botthof, A. and Hartmann, E. (2015). Zukunft der Arbeit in Industrie 4.0 - Neue Perspektiven und offene Fragen. In Botthof, A. and Hartmann, E. A., editors, Zukunft der Arbeit in Industrie 4.0, pages 161-163. Springer Berlin Heidelberg.
- Bowling, N. A. and Kirkendall, C. (2012). Workload: A Review of Causes, Consequences, and Potential Interventions, pages 221-238. John Wiley & Sons, Ltd.
- Cain, B. (2007). A review of the mental workload literature. In RTO-TR-HFM-121-Part-II. NATO Science and Technology Organization.
- Choi, J., Ahmed, B., and Gutierrez-Osuna, R. (2012). Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 16(2):279-286.
- Choi, J. and Gutierrez-Osuna, R. (2009). Using heart rate monitors to detect mental stress. In Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pages 219-223.
- Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of artificial intelligence research, pages 263- 286.
- eSense Skin Response (2015). Biofeedback system. Mindfield Biosystems Ltd., Berlin, Germany.
- Fürnkranz, J. (2010). Decision tree. In Sammut, C. and Webb, G., editors, Encyclopedia of Machine Learning, pages 263-267. Springer US.
- Harris, W., Hancock, P., and Arthur, E. (1993). The effect of taskload projection on automation use, performance, and workload. In Proceedings of the Seventh International Symposium on Aviation Psychology.
- Hart, S. G. and Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. In Human Mental Workload, volume 52, pages 139-183. North-Holland.
- Healey, J. and Picard, R. (2005). Detecting Stress During Real-World Driving Tasks Using Physiological Sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2):156-166.
- Isshiki, H. and Yamamoto, Y. (1994). Instrument for monitoring arousal level using electrodermal activity. In Proceedings of IEEE International Conference on Instrumentation and Measurement Technology, pages 975-978. IEEE.
- Jorna, P. G. (1992). Spectral analysis of heart rate and psychological state: a review of its validity as a workload index. Biological psychology, 34(2-3):237-257.
- Karthikeyan, P., Murugappan, M., and Yaacob, S. (2013). Detection of human stress using short-term ECG and HRV signals. Journal of Mechanics in Medicine and Biology, 13(02):1350038.
- Keogh, E. (2010). Nearest neighbor. In Sammut, C. and Webb, G., editors, Encyclopedia of Machine Learning, pages 714-715. Springer US.
- Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., and Schwartz, P. J. (1996). Heart rate variability. European Heart Journal, 17(3):354-381.
- MATLAB (2015). Version 8.5.0 (R2015a). The MathWorks Inc., Natick, Massachusetts.
- MIO Alpha (2013). Heart rate watch. Physical Enterprises Inc. (Mio Global), Canada, Vancouver.
- Nexus 10 (2012). GT-P8110. Google Inc.; Samsung Electronics.
- Polar H6 (2012). Model: X9. Polar Electro Oy, Finland, Kempele.
- Quadrianto, N., Kersting, K., and Xu, Z. (2010). Gaussian process. In Sammut, C. and Webb, G., editors, Encyclopedia of Machine Learning, pages 428-439. Springer US.
- QuickAmp (2015). Biofeedbacksystem. Brain Products GmbH, Gilching, Germany.
- Rasmussen, C. E. and Nickisch, H. (2010). Gaussian processes for machine learning (GPML) toolbox. Journal of Machine Learning Research, 11:3011-3015.
- Rouse, W., Edwards, S., and Hammer, J. M. (1993). Modeling the dynamics of mental workload and human performance in complex systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(6):1662-1671.
- Singh, D., Vinod, K., and Saxena, S. (2004). Sampling frequency of the RR interval time series for spectral analysis of heart rate variability. Journal of medical engineering & technology, 28(6):263-272.
- Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6):643-662.
- Sun, F.-T., Kuo, C., Cheng, H.-T., Buthpitiya, S., Collins, P., and Griss, M. (2012). Activity-aware mental stress detection using physiological sensors. In Gris, M. and Yang, G., editors, Mobile Computing, Applications, and Services, volume 76, pages 211-230. Springer Berlin Heidelberg.
- Tarvainen, M., Ranta-aho, P., and Karjalainen, P. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 49(2):172-175.
- Wallhoff, F., Ablassmeier, M., Bannat, A., Buchta, S., Rauschert, A., Rigoll, G., and Wiesbeck, M. (2007). Adaptive human-machine interfaces in cognitive production environments. In Proceedings of IEEE International Conference on Multimedia and Expo, pages 2246-2249.
- Webb, G. (2010). Naïve bayes. In Sammut, C. and Webb, G., editors, Encyclopedia of Machine Learning, pages 713-714. Springer US.
- Wijsman, J., Grundlehner, B., Liu, H., Hermens, H., and Penders, J. (2011). Towards mental stress detection using wearable physiological sensors. In Proceedings of IEEE Engineering in Medicine and Biology Society, pages 1798-1801.
- Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, second edition.
- Young, M. S. and Stanton, N. A. (2002). Attention and automation: New perspectives on mental underload and performance. Theoretical Issues in Ergonomics Science, 3(2):178-194.
Paper Citation
in Harvard Style
Hörmann T., Hesse M., Christ P., Adams M., Menßen C. and Rückert U. (2016). Fine-Grained Prediction of Cognitive Workload in a Modern Working Environment by Utilizing Short-Term Physiological Parameters . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 42-51. DOI: 10.5220/0005665000420051
in Bibtex Style
@conference{biosignals16,
author={Timm Hörmann and Marc Hesse and Peter Christ and Michael Adams and Christian Menßen and Ulrich Rückert},
title={Fine-Grained Prediction of Cognitive Workload in a Modern Working Environment by Utilizing Short-Term Physiological Parameters},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={42-51},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005665000420051},
isbn={978-989-758-170-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Fine-Grained Prediction of Cognitive Workload in a Modern Working Environment by Utilizing Short-Term Physiological Parameters
SN - 978-989-758-170-0
AU - Hörmann T.
AU - Hesse M.
AU - Christ P.
AU - Adams M.
AU - Menßen C.
AU - Rückert U.
PY - 2016
SP - 42
EP - 51
DO - 10.5220/0005665000420051