Multi-robot Systems, Machine-Machine and Human-Machine Interaction, and Their Modelling

Ulrico Celentano, Juha Röning

2016

Abstract

The control of multi-agent systems, including multi-robot systems, requires some level of context and environment awareness as well as interaction among the interworked cognitive entities, whether they are artificial or natural. Proper specification of the cognitive functionalities and of the corresponding interfaces helps in achieving the capability to reach interoperability across different operational domains, and to reuse the system design across different application domains. The model for interworking cognitive entities presented in this article, which includes explicitly interworking capabilities, is applied to two major classes of interaction in multi-robot systems. Being the model inspired by both artificial and natural systems, makes it suitable for both machine-machine and human-machine interaction.

References

  1. Albus, J. (1991). Outline for a theory of intelligence. IEEE Trans. Syst. Man Cybernet., 21(3):473-509.
  2. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., and Qin, Y. (2004). An integrated theory of the mind. Psychol. Rev., 111(4):1036-1060.
  3. Artz, A. and Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2):137-175.
  4. Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE J. Robot. Autom., RA-2(1):14-23.
  5. Bryant, D. (2004). Modernizing our cognitive model. In Command Control Res. Technol. Symp., pages 1-14, San Diego, CA, US.
  6. Celentano, U. (2014). Dependable cognitive wireless networking: Modelling and design. Number 488. Acta Universitatis Ouluensis Series C: Technica.
  7. Dobson, S., Denazis, S., Fernández, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., and Zambonelli, F. (2006). A survey of autonomic communications. ACM Trans. Autonomous Adapt. Syst., 1(2):223-259.
  8. Dupourqué, V. (1984). A robot operating system. In IEEE Int. Conf. Robot. Autom., volume 1, Atlanta, GA, US.
  9. Kephart, J. and Chess, D. (2003). The vision of autonomic computing. IEEE Comput., 36(1):41-50.
  10. Kerr, J. and Nickels, K. (2012). Robot operating systems: Bridging the gap between human and robot. In Southeastern Symp. Syst. Theory (SSST), pages 99-104, Jacksonville, FL, US.
  11. Kieras, D. and Meyer, D. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Hum.-Comput. Interact., 12:391-438.
  12. La, H., Lim, R., and Sheng, W. (2015). Multirobot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol., 23(1):52-63.
  13. Langley, P., Laird, J., and Rogers, S. (2009). Cognitive architectures: Research issues and challenges. Cogn. Sys. Res., (10):141-160.
  14. Langley, P., Newell, A., and Rosenbloom, P. (1987). Soar: An architecture for general intelligence. Artif. Intell., 33(1):1-64.
  15. Mäenpää, T., Tikanmäki, A., Riekki, J., and Röning, J. (2004). A distributed architecture for executing complex tasks with multiple robots. In IEEE Int. Conf. Robot. Autom. (ICRA), pages 3449-3455, New Orleans, LA, US.
  16. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio . Kungliga Tekniska Högskola (KTH), Stockholm.
  17. Nilsson, N., editor (1984). Shakey the robot. Number Technical Note 323. Artificial Intelligence Center, SRI International, Menlo Park, CA.
  18. Peschl, M., Röning, J., and Link, N. (2012). Human integration in task-driven flexible manufacturing systems. In Katalinic, B., editor, Ann. DAAAM 2012 & Proc. 23rd Int. DAAAM Symp., pages 85-88, Zadar, Croatia.
  19. Polya, G. (1957). How to solve it: A new aspect of mathematical method. Doubleday Anchor Books, Garden City, NY, 2nd edition.
  20. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., and Ng, A. (2009). ROS: an open-source robot operating system. In ICRA Workshop Open Source Software, Kobe, Japan.
  21. Rein, K., Schade, U., and Hieb, M. (2009). Battle management language (BML) as an enabler. In IEEE Int. Conf. Commun. (ICC), Dresden, Germany.
  22. Remmersmann, T., Brüggemann, B., and Miloslaw, F. (2010). Robots to the ground. In Mil. Commun. Inform. Systems Conf. (MCC), pages 61-68, Warsaw, Poland.
  23. Shewhart, W. (1939). Statistical method from the viewpoint of quality control. Graduate School of the Department of Agriculture, Washington, DC. Reprint by Dover Publications, Mineola, NY, 1986.
  24. Thomas, R., DaSilva, L. A., and MacKenzie, A. (2005). Cognitive networks. In IEEE Int. Symp. New Frontiers Dynam. Spectrum Access Netw. (DySPAN), pages 352-360, Baltimore, MD, US.
Download


Paper Citation


in Harvard Style

Celentano U. and Röning J. (2016). Multi-robot Systems, Machine-Machine and Human-Machine Interaction, and Their Modelling . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-172-4, pages 118-125. DOI: 10.5220/0005667801180125


in Bibtex Style

@conference{icaart16,
author={Ulrico Celentano and Juha Röning},
title={Multi-robot Systems, Machine-Machine and Human-Machine Interaction, and Their Modelling},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2016},
pages={118-125},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005667801180125},
isbn={978-989-758-172-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Multi-robot Systems, Machine-Machine and Human-Machine Interaction, and Their Modelling
SN - 978-989-758-172-4
AU - Celentano U.
AU - Röning J.
PY - 2016
SP - 118
EP - 125
DO - 10.5220/0005667801180125