Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey

T. Weaver, Z. Xiao

2016

Abstract

This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied to a variety of different areas in science, computer graphics and engineering. It has been established as a popular technique for fluid based simulations, and has been extended to successfully simulate various phenomena such as multi-phase flows, rigid and elastic solids, and fluid features such as air bubbles and foam. Various aspects of the method will be discussed: Similarities, advantages and disadvantages in comparison to Eulerian methods; Fundamentals of the SPH method; The use of SPH in fluid simulation; The current trends in SPH. The paper ends with some concluding remarks about the use of SPH in fluid simulations, including some of the more apparent problems, and a discussion on prospects for future work.

References

  1. Akinci, G., Akinci, N., Oswald, E., and Teschner, M. (2013a). Adaptive surface reconstruction for sph using 3-level uniform grids.
  2. Akinci, M., Julian, I., Gizem, B., and Teschner, M. (2011). Animation of air bubbles with sph.
  3. Akinci, N., Akinci, G., and Teschner, M. (2013b). Versatile surface tension and adhesion for sph fluids. ACM Transactions on Graphics, 32.6:182.
  4. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. (2012). Versatile rigid-fluid coupling for incompressible sph. ACM Transactions on Graphics (TOG), 31(4):62.
  5. Altomare, C., Crespo, A. J., Domnguez, J. M., GmezGesteira, M., Suzuki, T., and Verwaest, T. (2015). Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96:1-12.
  6. Becker, M., Ihmsen, M., and Teschner, M. (2009). Corotated sph for deformable solids. NPH, pages 27-34.
  7. Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., and Shu, C. (2015). An sph model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, pages 169-188.
  8. Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. (2014). Iisph-flip for incompressible fluids. Computer Graphics Forum, 33(2).
  9. Cummins, S. J. and Rudman, M. (1999). An sph projection method.
  10. Du, S. and Kanai, T. (2014). Gpu-based adaptive surface reconstruction for real-time sph fluids.
  11. Fraedrich, R., Auer, S., and Westermann, R. (2010). Efficient high-quality volume rendering of sph data. Visualization and Computer Graphics, 16.6:1533-1540.
  12. Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to nonspherical stars. Monthly notices of the royal astronomical society, 181.3s:375-389.
  13. Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola, R. (2010). nteractive sph simulation and rendering on the gpu. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
  14. Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., and Shimosako, K. (2014). On enhancement of incompressible sph method for simulation of violent sloshing flows. Applied Ocean Research, 46:104-115.
  15. Harada, T., Koshizuka, S., and Kawaguchi, Y. (2007). Sliced data structure for particle-based simulations on gpus. Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia.
  16. He, X., Liu, N., Li, S., Wang, H., and Wang, G. (2012). Local poisson sph for viscous incompressible fluids. Computer Graphics Forum, 31(6):1948-1958.
  17. He, X., Wang, H., Zhang, F., Wang, H., Wang, G., and Zhou, K. (2014). Robust simulation of sparsely sampled thin features in sph-based free surface flows. ACM Transactions on Graphics (TOG), 34.
  18. Hérault, A., Bilotta, G., and Dalrymple, R. A. (2010). Sph on gpu with cuda. Journal of Hydraulic Research, 48.S1:74-79.
  19. Huang, C., Zhu, J., Sun, H., and Wu, E. (2015). Paralleloptimizing sph fluid simulation for realistic vr environments. Computer Animation and Virtual Worlds, 26(1):43-54.
  20. Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. (2011). A parallel sph implementation on multi-core cpus. Computer Graphics Forum, 30:99-112.
  21. Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. (2010). Boundary handling and adaptive timestepping for pcisph. Workshop on virtual reality interaction and physical simulation VRIPHYS.
  22. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. (2014). Sph fluids in computer graphics. Eurographics - State of the Art Reports.
  23. Kelager, M. (2006). Lagrangian fluid dynamics using smoothed particle hydrodynamics. University of Copenhagen. Denmark.
  24. Kim, S. and Park, J. (2014). A sph-based dissolution behavior model for real-time fluid-solid interaction. SIGGRAPH Asia 2014 Posters.
  25. Lee, E.-S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the sph mesh free particle method. Journal of computational physics, 227:8417-8436.
  26. Liu, M. B., Liu, G. R., and Lam, K. Y. (2003). Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and applied Mathematics, 155.2:263-284.
  27. Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82:1013-1024.
  28. Monaghan, J, J. and Kocharyan, A. (1995). Sph simulation of multi-phase flow. Computer Physics Communications, 87:225-235.
  29. Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543-574.
  30. Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on progress in physics, 68.8:1703-1759.
  31. M üller, M., Charypar, D., and Gross, M. (2003). Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation.
  32. M üller, M., Schirm, S., Teschner, M., Heielberger, B., and Gross, M. (2004). Interaction of fluids with deformable solids. Computer Animation and Virtual Worlds 15, no 3-4:159-171.
  33. M üller, M., Solenthaler, B., Keiser, R., and Gross, M. (2005). Particle-based fluid-fluid interaction. Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 237-244.
  34. Napoli, E., Marchis, M. D., and Vitanza, E. (2015). Panormus-sph. a new smoothed particle hydrodynamics solver for incompressible flows. Computers and Fluids, 106:185-195.
  35. Nie, X., Chen, L., and Xiang, T. (2015). Real-time incompressible fluid simulation on the gpu. International Journal of Computer Games Technology.
  36. Pan, W., Daily, M., and Baker, N. A. (2015). Numerical calculation of protein-ligand binding rates through solution of the smoluchowski equation using smoothed particle hydrodynamics. BMC biophysics, 8.1.
  37. Peer, A., Ihmsen, M., Cornelis, J., and Teschner, M. (2015). An implicit viscosity formulation for sph fluids. ACM Transactions on Graphics, 34(4):114.
  38. Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S. M. (2014). Multiple-fluid sph simulation using a mixture model. ACM Transactions on Graphics, 33 no. 5:171.
  39. Rustico, E., Bilotta, G., Herault, A., Del Negro, C., and Gallo, G. (2014). Advances in multi-gpu smoothed particle hydrodynamics simulations. Parallel and Distributed Systems, IEEE Transactions, 25(1):43-52.
  40. Schechter, H. and Bridson, R. (2010). Ghost sph for animating water. ACM Transactions on Graphics (TOG), 31(4):61.
  41. Solenthaler, B. and Pajarola, R. (2009). Predictivecorrective incompressible sph. ACM Transactions on Graphics (TOG), 28(3).
  42. Sporring, J., Henriksen, K., and Dohlmann, H. (2005). Physics-based animation. Hingham: Charles River Media.
  43. Takahashi, T., Dobashi, Y., Fujishiro, I., and Nishita, T., a. L. M. (2015). Implicit formulation for sphbased viscous fluids. Computer Graphics Forum, 34(2):493- 502.
  44. Yang, X., Liu, M., and Peng, S. (2014). Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Computers and Fluids, 92:199- 208.
  45. Yu, J. and Turk, G. (2010). Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Transactions on Graphics, 32.1:5.
  46. Zhang, Y., Solenthaler, B., and Pajarola, R. (2008). Adaptive sampling and rendering of fluids on the gpu. Proceedings of the Fifth Eurographics/IEEE VGTC conference on Point-Based Graphicsg.
  47. Zhang, Y., Zhang, T., Li, T., and Wang, P. (2015). Smoothed particle hydrodynamics approach for modeling sound of a rigid body falling on water. The Journal of the Acoustical Society of America, 137(4):2403.
  48. Zhao, J., Long, C., Xiong, S., Liu, C., and Yuan, Z. (2014). A new k nearest neighbours algorithm using cell grids for 3d scattered point cloud. Elektronika ir Elektrotechnika, 20(1):81-87.
Download


Paper Citation


in Harvard Style

Weaver T. and Xiao Z. (2016). Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 215-225. DOI: 10.5220/0005673702130223


in Bibtex Style

@conference{grapp16,
author={T. Weaver and Z. Xiao},
title={Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={215-225},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005673702130223},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey
SN - 978-989-758-175-5
AU - Weaver T.
AU - Xiao Z.
PY - 2016
SP - 215
EP - 225
DO - 10.5220/0005673702130223