Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey
T. Weaver, Z. Xiao
2016
Abstract
This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied to a variety of different areas in science, computer graphics and engineering. It has been established as a popular technique for fluid based simulations, and has been extended to successfully simulate various phenomena such as multi-phase flows, rigid and elastic solids, and fluid features such as air bubbles and foam. Various aspects of the method will be discussed: Similarities, advantages and disadvantages in comparison to Eulerian methods; Fundamentals of the SPH method; The use of SPH in fluid simulation; The current trends in SPH. The paper ends with some concluding remarks about the use of SPH in fluid simulations, including some of the more apparent problems, and a discussion on prospects for future work.
References
- Akinci, G., Akinci, N., Oswald, E., and Teschner, M. (2013a). Adaptive surface reconstruction for sph using 3-level uniform grids.
- Akinci, M., Julian, I., Gizem, B., and Teschner, M. (2011). Animation of air bubbles with sph.
- Akinci, N., Akinci, G., and Teschner, M. (2013b). Versatile surface tension and adhesion for sph fluids. ACM Transactions on Graphics, 32.6:182.
- Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. (2012). Versatile rigid-fluid coupling for incompressible sph. ACM Transactions on Graphics (TOG), 31(4):62.
- Altomare, C., Crespo, A. J., Domnguez, J. M., GmezGesteira, M., Suzuki, T., and Verwaest, T. (2015). Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96:1-12.
- Becker, M., Ihmsen, M., and Teschner, M. (2009). Corotated sph for deformable solids. NPH, pages 27-34.
- Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., and Shu, C. (2015). An sph model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, pages 169-188.
- Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. (2014). Iisph-flip for incompressible fluids. Computer Graphics Forum, 33(2).
- Cummins, S. J. and Rudman, M. (1999). An sph projection method.
- Du, S. and Kanai, T. (2014). Gpu-based adaptive surface reconstruction for real-time sph fluids.
- Fraedrich, R., Auer, S., and Westermann, R. (2010). Efficient high-quality volume rendering of sph data. Visualization and Computer Graphics, 16.6:1533-1540.
- Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to nonspherical stars. Monthly notices of the royal astronomical society, 181.3s:375-389.
- Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola, R. (2010). nteractive sph simulation and rendering on the gpu. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
- Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., and Shimosako, K. (2014). On enhancement of incompressible sph method for simulation of violent sloshing flows. Applied Ocean Research, 46:104-115.
- Harada, T., Koshizuka, S., and Kawaguchi, Y. (2007). Sliced data structure for particle-based simulations on gpus. Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia.
- He, X., Liu, N., Li, S., Wang, H., and Wang, G. (2012). Local poisson sph for viscous incompressible fluids. Computer Graphics Forum, 31(6):1948-1958.
- He, X., Wang, H., Zhang, F., Wang, H., Wang, G., and Zhou, K. (2014). Robust simulation of sparsely sampled thin features in sph-based free surface flows. ACM Transactions on Graphics (TOG), 34.
- Hérault, A., Bilotta, G., and Dalrymple, R. A. (2010). Sph on gpu with cuda. Journal of Hydraulic Research, 48.S1:74-79.
- Huang, C., Zhu, J., Sun, H., and Wu, E. (2015). Paralleloptimizing sph fluid simulation for realistic vr environments. Computer Animation and Virtual Worlds, 26(1):43-54.
- Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. (2011). A parallel sph implementation on multi-core cpus. Computer Graphics Forum, 30:99-112.
- Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. (2010). Boundary handling and adaptive timestepping for pcisph. Workshop on virtual reality interaction and physical simulation VRIPHYS.
- Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. (2014). Sph fluids in computer graphics. Eurographics - State of the Art Reports.
- Kelager, M. (2006). Lagrangian fluid dynamics using smoothed particle hydrodynamics. University of Copenhagen. Denmark.
- Kim, S. and Park, J. (2014). A sph-based dissolution behavior model for real-time fluid-solid interaction. SIGGRAPH Asia 2014 Posters.
- Lee, E.-S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the sph mesh free particle method. Journal of computational physics, 227:8417-8436.
- Liu, M. B., Liu, G. R., and Lam, K. Y. (2003). Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and applied Mathematics, 155.2:263-284.
- Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82:1013-1024.
- Monaghan, J, J. and Kocharyan, A. (1995). Sph simulation of multi-phase flow. Computer Physics Communications, 87:225-235.
- Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543-574.
- Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on progress in physics, 68.8:1703-1759.
- M üller, M., Charypar, D., and Gross, M. (2003). Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation.
- M üller, M., Schirm, S., Teschner, M., Heielberger, B., and Gross, M. (2004). Interaction of fluids with deformable solids. Computer Animation and Virtual Worlds 15, no 3-4:159-171.
- M üller, M., Solenthaler, B., Keiser, R., and Gross, M. (2005). Particle-based fluid-fluid interaction. Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 237-244.
- Napoli, E., Marchis, M. D., and Vitanza, E. (2015). Panormus-sph. a new smoothed particle hydrodynamics solver for incompressible flows. Computers and Fluids, 106:185-195.
- Nie, X., Chen, L., and Xiang, T. (2015). Real-time incompressible fluid simulation on the gpu. International Journal of Computer Games Technology.
- Pan, W., Daily, M., and Baker, N. A. (2015). Numerical calculation of protein-ligand binding rates through solution of the smoluchowski equation using smoothed particle hydrodynamics. BMC biophysics, 8.1.
- Peer, A., Ihmsen, M., Cornelis, J., and Teschner, M. (2015). An implicit viscosity formulation for sph fluids. ACM Transactions on Graphics, 34(4):114.
- Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S. M. (2014). Multiple-fluid sph simulation using a mixture model. ACM Transactions on Graphics, 33 no. 5:171.
- Rustico, E., Bilotta, G., Herault, A., Del Negro, C., and Gallo, G. (2014). Advances in multi-gpu smoothed particle hydrodynamics simulations. Parallel and Distributed Systems, IEEE Transactions, 25(1):43-52.
- Schechter, H. and Bridson, R. (2010). Ghost sph for animating water. ACM Transactions on Graphics (TOG), 31(4):61.
- Solenthaler, B. and Pajarola, R. (2009). Predictivecorrective incompressible sph. ACM Transactions on Graphics (TOG), 28(3).
- Sporring, J., Henriksen, K., and Dohlmann, H. (2005). Physics-based animation. Hingham: Charles River Media.
- Takahashi, T., Dobashi, Y., Fujishiro, I., and Nishita, T., a. L. M. (2015). Implicit formulation for sphbased viscous fluids. Computer Graphics Forum, 34(2):493- 502.
- Yang, X., Liu, M., and Peng, S. (2014). Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Computers and Fluids, 92:199- 208.
- Yu, J. and Turk, G. (2010). Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Transactions on Graphics, 32.1:5.
- Zhang, Y., Solenthaler, B., and Pajarola, R. (2008). Adaptive sampling and rendering of fluids on the gpu. Proceedings of the Fifth Eurographics/IEEE VGTC conference on Point-Based Graphicsg.
- Zhang, Y., Zhang, T., Li, T., and Wang, P. (2015). Smoothed particle hydrodynamics approach for modeling sound of a rigid body falling on water. The Journal of the Acoustical Society of America, 137(4):2403.
- Zhao, J., Long, C., Xiong, S., Liu, C., and Yuan, Z. (2014). A new k nearest neighbours algorithm using cell grids for 3d scattered point cloud. Elektronika ir Elektrotechnika, 20(1):81-87.
Paper Citation
in Harvard Style
Weaver T. and Xiao Z. (2016). Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 215-225. DOI: 10.5220/0005673702130223
in Bibtex Style
@conference{grapp16,
author={T. Weaver and Z. Xiao},
title={Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={215-225},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005673702130223},
isbn={978-989-758-175-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey
SN - 978-989-758-175-5
AU - Weaver T.
AU - Xiao Z.
PY - 2016
SP - 215
EP - 225
DO - 10.5220/0005673702130223