Angular Uncertainty Refinement and Image Reconstruction Improvement in Cryo-electron Tomography

Hmida Rojbani, Étienne Baudrier, Benoît Naegel, Loïc Mazo, Atef Hamouda

2016

Abstract

In the field of cryo-electron tomography (cryo-ET), numerous approaches have been proposed to tackle the difficulties of the three-dimensional reconstruction problem. And that, in order to cope with (1) the missing and noisy data from the collected projections, (2) errors in projection images due to acquisition problems, (3) the capacity of processing large data sets and parameterizing the contrast function of the electron microscopy. In this paper, we present a novel approach for dealing with angular uncertainty in cryo-ET. To accomplish this task we propose a cost function and with the use of the nonlinear version of the optimization algorithm called Conjugate Gradient, we minimize it. We test the efficiency of our algorithm with both simulated and real data.

References

  1. Brandt, S. and Ziese, U. (2006). Automatic TEM image alignment by trifocal geometry. Journal of Microscopy, 222:1-14.
  2. Colliex, C. (1998). The Electron Microscopy. Presses Universitaires de France.
  3. Dai, Y. H. and Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. on Optimization, 10(1):177-182.
  4. Egerton, R., Li, P., and Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35(6):399-409.
  5. Frank, J. (2006). Electron tomography: methods for threedimensional visualization of structures in the cell. Springer.
  6. Gilbert, P. (1972). Iterative methods for the threedimensional reconstruction of an object from projections. Journal of Theoretical Biology, 36(1):105-117.
  7. Gordon, R., Bender, R., and Herman, G. (1970). Algebraic Reconstruction Techniques (ART) for threedimensional electron microscopy and X-ray photography. J Theor Biol, 29(3):471-481.
  8. Joseph, P. (1982). An improved algorithm for reprojecting rays through pixel images. Medical Imaging, IEEE Transactions on, 1(3):192-196.
  9. Man, B. D. and Basu, S. (2004). Distance-driven projection and backprojection in three dimensions. Physics in Medicine and Biology, 49(11):2463.
  10. Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer-Verlag New York, 2 edition.
  11. Penczek, P. (2010). Chapter one - fundamentals of three-dimensional reconstruction from projections. In Grant, J., editor, Cryo-EM, Part B: 3-D Reconstruction, volume 482 of Methods in Enzymology, pages 1-33. Academic Press.
  12. Sorzano, C., Messaoudi, C., Eibauer, M., Bilbao-Castro, J., Hegerl, R., Nickell, S., Marco, S., and Carazo, J. (2009). Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics, 10(1):124.
  13. Stagg, S., Lander, G., Pulokas, J., Fellmann, D., Cheng, A., Quispe, J., Mallick, S., Avila, R., Carragher, B., and C.S.Potter (2006). Automated cryo-em data acquisition and analysis of 284742 particles of groel. J Struct Biol, 155:470-481.
  14. Tran, V.-D., Moreaud, M., Thiébaut, E., Denis, L., and Becker, J. M. (2013). Inverse Problem Approach for the Alignment of Electron Tomographic Series. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 69(2):279-291.
  15. Yang, C., Ng, E., and Penczek, P. (2005). Unified 3-D structure and projection orientation refinement using quasiNewton algorithm. J Struct Biol, 149(1):53-64.
  16. Zheng, Q., Sedat, J., and Agard, D. (2010). Automated data collection for electron microscopic tomography. Methods in Enzymology, 481(10):283-315.
Download


Paper Citation


in Harvard Style

Rojbani H., Baudrier É., Naegel B., Mazo L. and Hamouda A. (2016). Angular Uncertainty Refinement and Image Reconstruction Improvement in Cryo-electron Tomography . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 94-100. DOI: 10.5220/0005680600940100


in Bibtex Style

@conference{visapp16,
author={Hmida Rojbani and Étienne Baudrier and Benoît Naegel and Loïc Mazo and Atef Hamouda},
title={Angular Uncertainty Refinement and Image Reconstruction Improvement in Cryo-electron Tomography},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={94-100},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005680600940100},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Angular Uncertainty Refinement and Image Reconstruction Improvement in Cryo-electron Tomography
SN - 978-989-758-175-5
AU - Rojbani H.
AU - Baudrier É.
AU - Naegel B.
AU - Mazo L.
AU - Hamouda A.
PY - 2016
SP - 94
EP - 100
DO - 10.5220/0005680600940100