RadioBio data: A Moddicom Module to Predict Tumor Control Probability and Normal Tissue Complication Probability in Radiotherapy

Nicola Dinapoli, Anna Rita Alitto, Mauro Vallati, Rosa Autorino, Roberto Gatta, Luca Boldrini, Andrea Damiani, Giovanna Mantini, Vincenzo Valentini

2016

Abstract

In this work a system for analysing radiotherapy treatment planning dose-volume data is proposed. The work starts from the definition of a framework inside a statistical scripting environment (R) used for creating a software package. The analysis of dose-volume data in radiotherapy of malignant tumours is mandatory for evaluating the prescribed treatment and for feedback analysis of outcome, both in the direction of tumour control and in detection of parameters for estimating and predicting toxicity outcome. The statistical analysis of large amount of clinical data can be slowed by the lack of practice in statistical tools needed, by clinicians, to perform such kind of analysis. This is the reason that lead our working group in the creation of such a tool. Finally an example of clinical application of our software is given for the analysis of the outcome of patients undergoing to radiotherapy for prostate cancer.

References

  1. Bentzen, S. and Tucker, S. (1997). Quantifying the position and steepness of radiation dose-response curves. Int J Radiat Biol., 71(5):531-42.
  2. Bentzen, S. M., Constine, L. S., Deasy, J. O., Eisbruch, A., Jackson, A., Marks, L. B., Haken, R. K. T., and Yorke, E. D. (2010). Quantitative analyses of normal tissue effects in the clinic (quantec): An introduction to the scientific issues. Radiation Oncology, 76(3):S3-S9.
  3. Burman, C., Kutcher, G., Emami, B., and Goitein, M. (1991). Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys, 21(1):123-35.
  4. Cox, J., Stetz, J., and PajaK, T. (1995). Toxicity criteria of the radiation therapy oncology group (rtog) and the european organization for research and treatment of cancer (eortc). Int. J. Radiation Oncology Biol. Phys, 31(5):1341-1346.
  5. Dinapoli, N., Alitto, A., Vallati, M., Gatta, R., Autorino, R., Boldrini, L., Damiani, A., and Valentini, V. (2015a). Moddicom: A complete and easily accessible library for prognostic evaluations relying on image features. In IEEE Engineering in Medicine and Biology Society, 37th Annual International Conference.
  6. Dinapoli, N., Alitto, A. R., Vallati, M., Gatta, R., Autorino, R., Boldrini, L., Damiani, A., and Valentini, V. (2015b). Moddicom: a complete and easily accessible library for prognostic evaluations relying on image features. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). IEEE.
  7. Eichelberg, M., Riesmeier, J., Wilkens, T., Hewett, A., Barth, A., and Jensch, P. (2004). Ten years of medical imaging standardization and prototypical implementation: the dicom standard and the offis dicom toolkit (dcmtk). In Medical Imaging 2004, pages 57-68.
  8. Gay, H. and Niemierko, A. (2007). A free program for calculating eud-based ntcp and tcp in external beam radiotherapy. Phys Med., 23(3-4):115-25.
  9. Marks, L., Bentzen, S., Deasy, J., Kong, F.-M., Bradley, J., Vogelius, I., Naqa, I., Hubbs, J., Lebesque, J., Timmerman, R., Martel, M., and Jackson, A. (2010a). Radiation dose-volume effects in the lung. Int. J. Radiation Oncology Biol. Phys, 76(3):S70-S76.
  10. Marks, L. B., Yorke, E. D., Jackson, A., Haken, R. K. T., Constine, L. S., Eisbruch, A., Bentzen, S. M., Nam, J., and Deasy, J. O. (2010b). Use of normal tissue complication probability models in the clinic. Radiation Oncology, 76(3):S3-S9.
  11. Michalski, J., Gay, H., Jackson, A., Tucker, S., and Deasy, J. (2010). Radiation dose-volume effects in radiationinduced rectal injury. Int. J. Radiation Oncology Biol. Phys, 76(3):S123-S129.
  12. Munro, T. R. and Gilbert, C. W. (1961). The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol., 34:246-51.
  13. Naqa, I. E., Bradley, J., Blanco, A., Lindsay, P., Vicic, M., Hope, A., and Deasy, J. (2006). Multi-variable modeling of radiotherapy outcomes including dose-volume and clinical factors. Int. J. Radiation Oncology Biol. Phys, 64(4):1275-1286.
  14. Niemierko, A. (1997). Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Medical physics, 24(1):103-10.
  15. of Health, U. D. and Human Services, National Institutes of Health, N. C. I. v. (June 14 2010). Common terminology criteria for adverse events (ctcae).
  16. Okunieff, P., Morgan, D., Niemierko, A., and Suit, H. (1995). Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys, 32(4):1227-37.
  17. Shipley, W. U., Tepper, J. E., Prout, G. R., Verhey, L., Mendiondo, O., Goitein, M., Koehler, A., and Suit, H. (1979). Proton radiation as boost therapy for localized prostatic carcinoma. JAMA, 241(18):1912-5.
  18. Van den Heuvel, F. (2006). Decomposition analysis of differential dose volume histograms. Medical Physics, 33(2):297.
  19. Warkentin, B., Stavrev, P., Stavreva, N., Field, C., and Fallone, B. (2004). A tcp-ntcp estimation module using dvhs and known radiobiological models and parameter sets. J Appl Clin Med Phys, 5(1):50-63.
Download


Paper Citation


in Harvard Style

Dinapoli N., Alitto A., Vallati M., Autorino R., Gatta R., Boldrini L., Damiani A., Mantini G. and Valentini V. (2016). RadioBio data: A Moddicom Module to Predict Tumor Control Probability and Normal Tissue Complication Probability in Radiotherapy . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 277-281. DOI: 10.5220/0005693502770281


in Bibtex Style

@conference{healthinf16,
author={Nicola Dinapoli and Anna Rita Alitto and Mauro Vallati and Rosa Autorino and Roberto Gatta and Luca Boldrini and Andrea Damiani and Giovanna Mantini and Vincenzo Valentini},
title={RadioBio data: A Moddicom Module to Predict Tumor Control Probability and Normal Tissue Complication Probability in Radiotherapy},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={277-281},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005693502770281},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - RadioBio data: A Moddicom Module to Predict Tumor Control Probability and Normal Tissue Complication Probability in Radiotherapy
SN - 978-989-758-170-0
AU - Dinapoli N.
AU - Alitto A.
AU - Vallati M.
AU - Autorino R.
AU - Gatta R.
AU - Boldrini L.
AU - Damiani A.
AU - Mantini G.
AU - Valentini V.
PY - 2016
SP - 277
EP - 281
DO - 10.5220/0005693502770281