Abstract Dialectical Frameworks for Text Exploration

Elena Cabrio, Serena Villata

2016

Abstract

Textual Entailment (TE) systems aim at recognizing the relations of entailment or non entailment holding between two text fragments (i.e. a pair). The identified TE pairs are considered as independent one from the others. However, in the latest years TE systems have been challenged against a number of real world application scenarios like analyzing costumers interactions about a service, or analyzing online debates. These applications have underlined the need to move from TE pairs to TE graphs where pairs are no more independent. Moving from single pairs to graphs has the advantage of providing an overall view of the topic discussed in the text. The challenge here is to define ways to exploit such graph-based representation for text exploration. In the literature, some approaches apply abstract argumentation theory to compute the accepted arguments of a debate, but they present a number of drawbacks, e.g., the non entailment relation and the attack relation in abstract argumentation are assumed to be equivalent, but this is not always the case. In this paper, we define bipolar entailment graphs, i.e., graphs whose nodes are text fragments and the edges represent the entailment or non entailment relations. We adopt abstract dialectical frameworks to define acceptance conditions for the nodes such that the resulting framework returns us relevant information for our text exploration task. Experimental evaluation shows the feasibility of our approach.

References

  1. Amgoud, L. and Prade, H. (2012). Can AI models capture natural language argumentation? IJCINI, 6(3):19-32.
  2. Bar-Haim, R., Dagan, I., Greental, I., and Shnarch, E. (2007). Semantic inference at the lexical-syntactic level. In AAAI, pages 871-876.
  3. Berant, J., Dagan, I., Adler, M., and Goldberger, J. (2012). Efficient tree-based approximation for entailment graph learning. In ACL (1), pages 117-125.
  4. Berant, J., Dagan, I., and Goldberger, J. (2010). Global learning of focused entailment graphs. In ACL, pages 1220-1229.
  5. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J. P., and Woltran, S. (2013). Abstract dialectical frameworks revisited. In IJCAI.
  6. Brewka, G. and Woltran, S. (2010). Abstract dialectical frameworks. In KR.
  7. Brewka, G. and Woltran, S. (2014). GRAPPA: A semantical framework for graph-based argument processing. In Schaub, T., Friedrich, G., and O'Sullivan, B., editors, ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelligence and Applications , pages 153- 158. IOS Press.
  8. Cabrio, E. and Villata, S. (2012). Natural language arguments: A combined approach. In ECAI, pages 205- 210.
  9. Cabrio, E. and Villata, S. (2013). A natural language bipolar argumentation approach to support users in online debate interactions. Argument & Computation, 4(3):209-230.
  10. Carenini, G. and Moore, J. D. (2006). Generating and evaluating evaluative arguments. Artif. Intell., 170(11):925-952.
  11. Cayrol, C. and Lagasquie-Schiex, M.-C. (2013). Bipolarity in argumentation graphs: Towards a better understanding. Int. J. Approx. Reasoning, 54(7):876-899.
  12. Ches n˜evar, C. I. and Maguitman, A. (2004). An argumentative approach to assessing natural language usage based on the web corpus. In ECAI, pages 581-585.
  13. Dagan, I., Dolan, B., Magnini, B., and Roth, D. (2009). Recognizing textual entailment: Rational, evaluation and approaches. Natural Language Engineering (JNLE), 15(Special Issue 04):i-xvii.
  14. Dung, P. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-358.
  15. Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., and Wooldridge, M. (2011). Weighted argument systems: Basic definitions, algorithms, and complexity results. Artif. Intell., 175(2):457-486.
  16. Feng, V. W. and Hirst, G. (2011). Classifying arguments by scheme. In ACL, pages 987-996.
  17. Gabbriellini, S. and Santini, F. (2015). A micro study on the evolution of arguments in amazon.com's reviews. In Chen, Q., Torroni, P., Villata, S., Hsu, J. Y., and Omicini, A., editors, PRIMA 2015: Principles and Practice of Multi-Agent Systems - 18th International Conference, Bertinoro, Italy, October 26-30, 2015, Proceedings, volume 9387 of Lecture Notes in Computer Science, pages 284-300. Springer.
  18. Gabbriellini, S. and Torroni, P. (2012). Large scale agreements via microdebates. In Ossowski, S., Toni, F., and Vouros, G. A., editors, Proceedings of the First International Conference on Agreement Technologies, AT 2012, Dubrovnik, Croatia, October 15-16, 2012, volume 918 of CEUR Workshop Proceedings, pages 366- 377. CEUR-WS.org.
  19. Gabbriellini, S. and Torroni, P. (2013a). Arguments in social networks. In Gini, M. L., Shehory, O., Ito, T., and Jonker, C. M., editors, International conference on Autonomous Agents and Multi-Agent Systems, AAMAS 7813, Saint Paul, MN, USA, May 6-10, 2013, pages 1119-1120. IFAAMAS.
  20. Gabbriellini, S. and Torroni, P. (2013b). Netarg: an agentbased social simulator with argumentative agents. In AAMAS, pages 1365-1366.
  21. Gordon, T., Prakken, H., and Walton, D. (2007). The carneades model of argument and burden of proof. Artif. Intell., 171(10-15):875-896.
  22. Heras, S., Atkinson, K., Botti, V. J., Grasso, F., Julián, V., and McBurney, P. (2013). Research opportunities for argumentation in social networks. Artif. Intell. Rev., 39(1):39-62.
  23. Kouylekov, M. and Negri, M. (2010). An open-source package for recognizing textual entailment. In ACL (System Demonstrations), pages 42-47.
  24. Leite, J. and Martins, J. (2011). Social abstract argumentation. In IJCAI, pages 2287-2292.
  25. Lin, D. and Pantel, P. (2001). Discovery of inference rules for question answering. Natural Language Engineering, 7:343-360.
  26. Lippi, M. and Torroni, P. (2015). Context-independent claim detection for argument mining. In Yang, Q. and Wooldridge, M., editors, Proceedings of the TwentyFourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 185-191. AAAI Press.
  27. Mehdad, Y., Carenini, G., Ng, R. T., and Joty, S. R. (2013). Towards topic labeling with phrase entailment and aggregation. In HLT-NAACL, pages 179-189.
  28. Moens, M.-F., Boiy, E., Palau, R. M., and Reed, C. (2007). Automatic detection of arguments in legal texts. In ICAIL, pages 225-230.
  29. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., and Abdallah, S. (2011). Representing and classifying arguments on the semantic web. Knowledge Eng. Review, 26(4):487-511.
  30. Reed, C. and Rowe, G. (2004). Araucaria: Software for argument analysis, diagramming and representation. International Journal on Artificial Intelligence Tools , 13(4):961-980.
  31. Stern, A. and Dagan, I. (2011). A confidence model for syntactically-motivated entailment proofs. In RANLP, pages 455-462.
  32. Stern, A. and Dagan, I. (2012). Biutee: A modular opensource system for recognizing textual entailment. In ACL (Demo), pages 73-78.
  33. Thimm, M. and Villata, S. (2015). System descriptions of the first international competition on computational models of argumentation (iccma'15). CoRR, abs/1510.05373.
  34. Verheij, B. (1998). Argumed - a template-based argument mediation system for lawyers and legal knowledge based systems. In JURIX, pages 113-130.
  35. Walton, D., Reed, C., and Macagno, F. (2008). Argumentation Schemes. Cambridge University Press.
  36. Wyner, A. and van Engers, T. (2010). A framework for enriched, controlled on-line discussion forums for egovernment policy-making. In eGov.
Download


Paper Citation


in Harvard Style

Cabrio E. and Villata S. (2016). Abstract Dialectical Frameworks for Text Exploration . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-172-4, pages 85-95. DOI: 10.5220/0005699100850095


in Bibtex Style

@conference{icaart16,
author={Elena Cabrio and Serena Villata},
title={Abstract Dialectical Frameworks for Text Exploration},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2016},
pages={85-95},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005699100850095},
isbn={978-989-758-172-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Abstract Dialectical Frameworks for Text Exploration
SN - 978-989-758-172-4
AU - Cabrio E.
AU - Villata S.
PY - 2016
SP - 85
EP - 95
DO - 10.5220/0005699100850095