A Framework for Creating Realistic Synthetic Fluorescence Microscopy Image Sequences

Matsilele Mabaso, Daniel Withey, Bhekisipho Twala

2016

Abstract

Fluorescence microscopy imaging is an important tool in modern biological research, allowing insights into the processes of biological systems. Automated image analysis algorithms help in extracting information from these images. Validation of the automated algorithms can be done with ground truth data based on manual annotations, or using synthetic data with known ground truth. Synthetic data avoids the need to annotate manually large datasets but may lack important characteristics of the real data. In this paper, we present a framework for the generation of realistic synthetic fluorescence microscopy image sequences of cells, based on the simulation of spots with realistic motion models, noise models, and with the use of real background from microscopy images. Our framework aims to close the gap between real and synthetic image sequences. To study the effect of real backgrounds, we compared three spot detection methods using our synthetic image sequences. The results show that the real background influences spot detection, reducing the effectiveness of the spot detection algorithms, indicating the value of synthetic images with a realistic background in system validation.

References

  1. Allalou, A., Pinidiyaarachchi, A. and Wählby, C. (2010) 'Robust signal detection in 3D fluorescence microscopy 78, Cytometry, vol. 77A, no. 1, pp. 86-96.
  2. Carter, B.C., Shubeita, G.T. and Gross, S.P. (2005) 'Tracking single particles: a user-friendly quantitative evaluation', Physical Biology, vol. 2, no. 1, pp. 60-72.
  3. Cheezum, M.K., Walker, W.F. and Guilford, W.H. (2001) 'Quantitative comparison of algorithms for tracking single fluorescent particle', Biophysical Journal, vol. 81, pp. 2378-2388.
  4. Chenouard, N. (2015) Particle tracking benchmark generator, [Online], Available: http://icy.bioimageanalysis.org/plugin/Particle_trackin g_benchmark_generator [1 September 2015].
  5. Chenouard, N., Ihor, S., de Chaumont, F., Maska, M., Sbalzarini, I.F., Gong, Y., Cardinale, J., Carthel, C., Coraluppi, S., Winter, M., Cohen, A.R., Godinez, W.J., Rohr, K., Kalaidzidis, Y., Liang, L., Duncan, J., Shen, H., Xu, Y., Magnusson, K.E., Jalden, J. et al. (2014) 'Objective comparison of particle tracking methods', Nature Methods, vol. 11, no. 3, pp. 281-290.
  6. Crocker, J.C. and Grier, D.G. (1996) 'Methods of Digital Video Microscopy for Colloidal Studies', Journal of Colloid and Interface Science 179, pp. 298-310.
  7. Feng, L., Xu, Y., Yang, Y. and Zheng, X. (2011) 'Multiple dense particle tracking in fluorescence microscopy images based on multidimensional assignment', Journal of Structural Biology, vol. 173, pp. 219-228.
  8. Genovesio, A., Liendl, T., Emiliana, V., Parak, W.J., Coppey-Moisan, M. and Olivo-Marin, J.-C. (2006) 'Multiple particle tracking in 3d+t microscopy: Method and application to the tracking of endocytosed quantum dots', IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1062-1070.
  9. Lakadamyali, M., Rust, M.R., Babcock, H.P. and Zhuang, X. (2003) 'Visualizing infection of individual influenza viruses', Proceedings of the National Academy of Science of the United States of America, 9280-9285.
  10. Olivo-Marin, J.-C. (2008) 'Extraction of spots in biological images using multiscale products', Pattern Recognition, vol. 35, no. 9, pp. 1989-1996.
  11. Rezatifighi, S.H., Pitkeathly, W.T., Goud, S., Hartley, R., Mele, K., Hughes, W.E. and Burchfield, J.G. (2013) 'A framework for generating realistic synthetic sequences of total internal reflection fluorescence microscopy images', 10th IEEE International Symposium on Biomedical Imaging, 157-160.
  12. Ruusuvuori, P., Äijö, T., Chowdhury, S., GarmaendiaTorres, C., Selinummi, J., Birbaumer, M., Dudley, A.M., Pelkmans, L. and Yli-Harja, O. (2010) 'Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images', BMC Bioinformatics, vol. 11, pp. 1-17.
  13. Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T., Huttunen, H. and Yli-Harja, O. (2008) 'Benchmark set of synthetic images for validating cell image analysis algorithms', Proceedings of the 16th European Signal Processing Conference, EUSIPCO.
  14. Sbalzarini, I.F. and Koumoutsakos, P. (2005) 'Feature Point Tracking and Trajectory Analysis for Video Imaging in Cell Biology', Journal of Structural Biology, vol. 151, no. 2, pp. 182-195.
  15. Smal, I. (2015) Synthetic data generator, September, [Online], Available: http://smal.ws/wp/software/synthetic-data-generator/.
  16. Smal, I., Loog, M., Niessen, W. and Meijering, E. (2010) 'Quantitative comparison of spot detection methods in fluorescence microscopy', IEEE Trans on Medical Imaging, vol. 29, no. 2, pp. 282-301.
  17. Smal, I., Meijering, E., Draegenstein, K., Galjart, N., Grigoriev, I., Akhmanova, A., van Royen, M., Houtsmuller, A.B. and Niessen, W. (2008) 'Multiple object tracking in molecular bioimaging by RaoBlackwellized marginal particle filtering', Medical Image Analysis , vol. 12, no. 6, pp. 764-777.
  18. Vincent, L. (1993) 'Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms 78, IEEE Trans Image Process, vol. 2, pp. 176-201.
  19. Yoon, J.W., Bruckbauer, A., Fitzgerald, W.J. and Klenerman, D. (2008) 'Bayesian inference for improved single molecule fluorescence tracking', Biophysical Journal, vol. 94, pp. 4932-4947.
  20. Zhang, B., Zerubia, J. and Olivo-Marin, J.-C. (2007) 'Gaussian approximations of fluorescence microscope PSF models', Applied Optics, vol. 46, no. 10, pp. 1-34.
Download


Paper Citation


in Harvard Style

Mabaso M., Withey D. and Twala B. (2016). A Framework for Creating Realistic Synthetic Fluorescence Microscopy Image Sequences . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 85-92. DOI: 10.5220/0005699200850092


in Bibtex Style

@conference{bioimaging16,
author={Matsilele Mabaso and Daniel Withey and Bhekisipho Twala},
title={A Framework for Creating Realistic Synthetic Fluorescence Microscopy Image Sequences},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016)},
year={2016},
pages={85-92},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005699200850092},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016)
TI - A Framework for Creating Realistic Synthetic Fluorescence Microscopy Image Sequences
SN - 978-989-758-170-0
AU - Mabaso M.
AU - Withey D.
AU - Twala B.
PY - 2016
SP - 85
EP - 92
DO - 10.5220/0005699200850092