GPS Trajectory Data Enrichment based on a Latent Statistical Model
Akira Kinoshita, Atsuhiro Takasu, Kenro Aihara, Jun Ishii, Hisashi Kurasawa, Hiroshi Sato, Motonori Nakamura, Jun Adachi
2016
Abstract
This paper proposes a latent statistical model for analyzing global positioning system (GPS) trajectory data. Because of the rapid spread of GPS-equipped devices, numerous GPS trajectories have become available, and they are useful for various location-aware systems. To better utilize GPS data, a number of sensor data mining techniques have been developed. This paper discusses the application of a latent statistical model to two closely related problems, namely, moving mode estimation and interpolation of the GPS observation. The proposed model estimates a latent mode of moving objects and represents moving patterns according to the mode by exploiting a large GPS trajectory dataset. We evaluate the effectiveness of the model through experiments using the GeoLife GPS Trajectories dataset and show that more than three-quarters of covered locations were correctly reproduced by interpolation at a fine granularity.
References
- Biau, G. and Fischer, A. (2012). Parameter selection for principal curves. IEEE Trans. Inf. Theory, 58(3):1924-1939.
- Bishop, C. M. (2006). Mixture Models and EM. In Pattern Recognit. Mach. Learn., chapter 9, pages 423- 460. Springer, New York, NY, USA.
- Brunsdon, C. (2007). Path estimation from GPS tracks. In Proc. 9th Int. Conf. GeoComputation, Maynooth, Ireland.
- Cao, L., Luo, J., Gallagher, A., Jin, X., Han, J., and Huang, T. S. (2010). A worldwide tourism recommendation system based on geotagged web photos. In 2010 IEEE Int. Conf. Acoust. Speech Signal Process., pages 2274-2277, Dallas, Texas, USA. IEEE.
- Feng, T. and Timmermans, H. J. P. (2013). Map matching of GPS data with Bayesian belief networks. Proc. East. Asia Soc. Transp. Stud., 9.
- Giannotti, F., Nanni, M., Pedreschi, D., and Pinelli, F. (2007). Trajectory pattern mining. In Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD 7807), pages 330-339, San Jose, California, USA. ACM.
- Goh, C. Y., Dauwels, J., Mitrovic, N., Asif, M. T., Oran, A., and Jaillet, P. (2012). Online map-matching based on Hidden Markov model for real-time traffic sensing applications. In 15th Int. IEEE Conf. Intell. Transp. Syst., pages 776 - 781, Anchorage, Alaska, USA. IEEE.
- Grönroos, S.-A., Virpioja, S., Smit, P., and Kurimo, M. (2014). Morfessor FlatCat: An HMM-based method for unsupervised and semi-supervised learning of morphology. In Proc. COLING 2014, 25th Int. Conf. Comput. Linguist. Tech. Pap., pages 1177-1185, Dublin, Ireland.
- Hao, P., Boriboonsomsin, K., Wu, G., and Barth, M. (2014). Probabilistic model for estimating vehicle trajectories using sparse mobile sensor data. In 2014 IEEE 17th Int. Conf. Intell. Transp. Syst. (ITSC 7814), pages 1363- 1368, Qingdao, China. IEEE.
- Karagiorgou, S. and Pfoser, D. (2012). On vehicle tracking data-based road network generation. In Proc. 20th Int. Conf. Adv. Geogr. Inf. Syst. (SIGSPATIAL 7812), pages 89-98, Redondo Beach, California. ACM.
- Kinoshita, A., Takasu, A., and Adachi, J. (2015). Real-time traffic incident detection using a probabilistic topic model. Inf. Syst., 54:169-188.
- Monreale, A., Pinelli, F., Trasarti, R., and Giannotti, F. (2009). WhereNext: A location predictor on trajectory pattern mining. In Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD 7809), pages 637-646, Paris, France. ACM.
- Sankararaman, S., Agarwal, P. K., Mølhave, T., Pan, J., and Boedihardjo, A. P. (2013). Model-driven matching and segmentation of trajectories. In Proc. 21st ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst. (SIGSPATIAL 7813), pages 234-243, Orlando, Florida. ACM.
- Schnitzler, F., Artikis, A., Weidlich, M., Boutsis, I., Liebig, T., Piatkowski, N., Bockermann, C., Morik, K., Kalogeraki, V., Marecek, J., Gal, A., Mannor, S., Kinane, D., and Gunopulos, D. (2014). Heterogeneous stream processing and crowdsourcing for traffic monitoring: Highlights. In Proc. Eur. Conf. Mach. Learn. Princ. Pract. Knowl. Discov. Databases (ECML PKDD 7814), pages 520-523, Nancy, France. Springer Berlin Heidelberg.
- Wang, Y., Zheng, Y., and Xue, Y. (2014). Travel time estimation of a path using sparse trajectories. In Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. (KDD 7814), pages 25-34, New York, New York, USA. ACM.
- Wei, H., Wang, Y., Forman, G., Zhu, Y., and Guan, H. (2012). Fast Viterbi map matching with tunable weight functions. In Proc. 20th Int. Conf. Adv. Geogr. Inf. Syst. (SIGSPATIAL 7812), pages 613-616, Redondo Beach, California. ACM.
- Yang, Q., Wu, G., Boriboonsomsin, K., and Barth, M. (2013). Arterial roadway travel time distribution estimation and vehicle movement classification using a modified Gaussian mixture model. In 16th Int. IEEE Conf. Intell. Transp. Syst. (ITSC 7813), pages 681-685, The Hague, The Netherlands. IEEE.
- Yang, W.-S., Cheng, H.-C., and Dia, J.-B. (2008). A location-aware recommender system for mobile shopping environments. Expert Syst. Appl., 34(1):437- 445.
- Yu, S.-Z. and Kobayashi, H. (2003). A hidden semi-Markov model with missing data and multiple observation sequences for mobility tracking. Signal Processing, 83:235-250.
- Zheng, Y., Chen, Y., Li, Q., Xie, X., and Ma, W.-Y. (2010a). Understanding transportation modes based on GPS data for web applications. ACM Trans. Web, 4(1):1:1- 1:36.
- Zheng, Y., Li, Q., Chen, Y., Xie, X., and Ma, W.-Y. (2008). Understanding mobility based on GPS data. In Proc. 10th Int. Conf. Ubiquitous Comput. (UbiComp 7808), pages 312-321, Seoul, Korea. ACM.
- Zheng, Y., Xie, X., and Ma, W.-Y. (2010b). GeoLife: A collaborative social networking service among user, location and trajectory. Bull. Tech. Comm. Data Eng., 33(2):32-39.
- Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y. (2009). Mining interesting locations and travel sequences from GPS trajectories. In Proc. 18th Int. Conf. World Wide Web (WWW 7809), pages 791-800, Madrid, Spain. ACM.
- Zhu, X. and Goldberg, A. B. (2009). Introduction to SemiSupervised Learning. Morgan & Claypool.
Paper Citation
in Harvard Style
Kinoshita A., Takasu A., Aihara K., Ishii J., Kurasawa H., Sato H., Nakamura M. and Adachi J. (2016). GPS Trajectory Data Enrichment based on a Latent Statistical Model . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 255-262. DOI: 10.5220/0005699902550262
in Bibtex Style
@conference{icpram16,
author={Akira Kinoshita and Atsuhiro Takasu and Kenro Aihara and Jun Ishii and Hisashi Kurasawa and Hiroshi Sato and Motonori Nakamura and Jun Adachi},
title={GPS Trajectory Data Enrichment based on a Latent Statistical Model},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={255-262},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005699902550262},
isbn={978-989-758-173-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - GPS Trajectory Data Enrichment based on a Latent Statistical Model
SN - 978-989-758-173-1
AU - Kinoshita A.
AU - Takasu A.
AU - Aihara K.
AU - Ishii J.
AU - Kurasawa H.
AU - Sato H.
AU - Nakamura M.
AU - Adachi J.
PY - 2016
SP - 255
EP - 262
DO - 10.5220/0005699902550262