Mean Response-Time Minimization of a Soft-Cascade Detector
Francisco Rodolfo Barbosa-Anda, Cyril Briand, Frédéric Lerasle, Alhayat Ali Mekonnen
2016
Abstract
In this paper, the problem of minimizing the mean response-time of a soft-cascade detector is addressed. A soft-cascade detector is a machine learning tool used in applications that need to recognize the presence of certain types of object instances in images. Classical soft-cascade learning methods select the weak classifiers that compose the cascade, as well as the classification thresholds applied at each cascade level, so that a desired detection performance is reached. They usually do not take into account its mean response-time, which is also of importance in time-constrained applications. To overcome that, we consider the threshold selection problem aiming to minimize the computation time needed to detect a target object in an image (i.e., by classifying a set of samples). We prove the NP-hardness of the problem and propose a mathematical model that takes benefit from several dominance properties, which are put into evidence. On the basis of computational experiments, we show that we can provide a faster cascade detector, while maintaining the same detection performances.
References
- Bourdev, L. and Brandt, J. (2005). Robust object detection via soft cascade. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR'05), volume 2, pages 236-243.
- Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., and Van Gool, L. (2011). Online multiperson tracking-by-detection from a single, uncalibrated camera. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(9):1820-1833.
- Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886- 893 vol. 1.
- Dollár, P. (2014). Piotr's Computer Vision Matlab Toolbox (PMT).
- Dollár, P., Appel, R., Belongie, S., and Perona, P. (2014). Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8):1532-1545.
- Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4):743-761.
- Ess, A., Schindler, K., Leibe, B., and Van Gool, L. (2010). Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 29(14):1707-1725.
- Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2):303-338.
- Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NPCompleteness. W. H. Freeman & Co., New York, NY, USA.
- Gerónimo, D., L ópez, A., Sappa, A., and Graf, T. (2010). Survey of pedestrian detection for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7):1239-1258.
- Jourdheuil, L., Allezard, N., Chateau, T., and Chesnais, T. (2012). Heterogeneous adaboost with real-time constraints - application to the detection of pedestrians by stereovision. In Proc. VISAPP, pages 539-546.
- Mekonnen, A. A., Lerasle, F., Herbulot, A., and Briand, C. (2014). People detection with heterogeneous features and explicit optimization on computation time. In International Conference on Pattern Recognition (ICPR'14), Stockholm, Sweden.
- Pan, H., Zhu, Y., and Xia, L. (2013). Efficient and accurate face detection using heterogeneous feature descriptors and feature selection. Computer Vision and Image Understanding, 117(1):12 - 28.
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), pages 1-42.
- Schapire, R. E. (2003). The boosting approach to machine learning: An overview. Lecture Notes in Statistics, pages 149-172.
- Tang, D., Liu, Y., and kyun Kim, T. (2012). Fast pedestrian detection by cascaded random forest with dominant orientation templates. In Proceedings of the British Machine Vision Conference (BMVC'12), pages 58.1- 58.11. BMVA Press.
- Viola, P. A. and Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2):137-154.
- Zhang, C. and Viola, P. A. (2008). Multiple-instance pruning for learning efficient cascade detectors. In Advances in Neural Information Processing Systems (NIPS'08), pages 1681-1688.
- Zhang, M. and Alhajj, R. (2009). Content-based image retrieval: From the object detection/recognition point of view. In Ma, Z., editor, Artificial Intelligence for Maximizing Content Based Image Retrieval, PA: Information Science Reference, pages 115-144. Hershey.
- Zhang, X., Yang, Y.-H., Han, Z., Wang, H., and Gao, C. (2013). Object class detection: A survey. ACM Comput. Surv., 46(1):10:1-10:53.
- Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S. (2006). Fast human detection using a cascade of histograms of oriented gradients. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, NY, USA.
Paper Citation
in Harvard Style
Barbosa-Anda F., Briand C., Lerasle F. and Mekonnen A. (2016). Mean Response-Time Minimization of a Soft-Cascade Detector . In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-171-7, pages 252-260. DOI: 10.5220/0005700702520260
in Bibtex Style
@conference{icores16,
author={Francisco Rodolfo Barbosa-Anda and Cyril Briand and Frédéric Lerasle and Alhayat Ali Mekonnen},
title={Mean Response-Time Minimization of a Soft-Cascade Detector},
booktitle={Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2016},
pages={252-260},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005700702520260},
isbn={978-989-758-171-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Mean Response-Time Minimization of a Soft-Cascade Detector
SN - 978-989-758-171-7
AU - Barbosa-Anda F.
AU - Briand C.
AU - Lerasle F.
AU - Mekonnen A.
PY - 2016
SP - 252
EP - 260
DO - 10.5220/0005700702520260