Physics-based and Retina-inspired Technique for Image Enhancement

Mohamed Sedky, Ange A. Malek Aly, Tomasz Bosakowski

2016

Abstract

This paper develops a novel image/video enhancement technique that integrates a physics-based image formation model, the dichromatic model, with a retina-inspired computational model, multiscale model of adaptation. In particular, physics-based features (e.g. Power Spectral Distribution of the dominant illuminant in the scene and the Surface Spectral Reflectance of the objects contained in the image are estimated and are used as inputs to the multiscale model for adaptation. The results show that our technique can adapt itself to scene variations such as a change in illumination, scene structure, camera position and shadowing and gives superior performance over the original model.

References

  1. Bajcsy R., Lee S., & Leonardis A., (1990). Colour image segmentation with detection of highlights and local illumination induced by inter-reflections In Proceedings of ICPR, pp. 785-790.
  2. Barnard, K., Cardei, V., & Funt, B. (2002). A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data. Image Processing, IEEE Transactions on, 11(9), 972- 984.
  3. Burt, P.J., and Adelson, E.H. (1983) The Laplacian Pyramid as a Compact Image Code. IEEE Transaction on Communication, 31(4), 532-540.
  4. Ciurea, F., & Funt, B. (2004). Tuning retinex parameters. Journal of Electronic Imaging, 13(1), 58-64.
  5. Finlayson, G. D. (1995). Color constancy in diagonal chromaticity space. In Computer Vision, 1995. Proceedings, Fifth International Conference on (pp. 218- 223). IEEE.
  6. Frankle, J. and McCann, J., (1983). Method and apparatus for lightness imaging, US Patent, May 1983, number Patent 4384336.
  7. Drew, M. S. (1990). Separating a color signal into illumination and surface reflectance components: Theory and applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 12(10), 966-977.
  8. Hunt, R.W.G. (1995). The Reproduction of Color. 5th edition, Kingstonupon-Thames, England: Fountain Press.
  9. Klinker, G. J., Shafer, S. A., & Kanade, T. (1990). A physical approach to color image understanding. International Journal of Computer Vision, 4(1), 7-38.
  10. Land, E. H. (1986). Recent advances in Retinex theory. Vision research, 26(1), 7-21.
  11. Land, E. H., & McCann, J. (1971). Lightness and retinex theory. JOSA, 61(1), 1-11.
  12. Maini, R., & Aggarwal, H. (2010). A comprehensive review of image enhancement techniques. arXiv preprint arXiv:1003.4053.
  13. Maloney L. T., (1986). Evaluation of linear models of surface spectral reflectance with small numbers of parameters. In: Journal of the Optical Society of America A, vol. 3, pp. 1673-1683.
  14. Marimont D. H., and Wandell B. A., (1992). Linear models of surface and illuminant spectra. In: Journal of the Optical Society of America A, vol. 3, pp. 1673-1683.
  15. Marr, D., & Vision, A. (1982). A computational investigation into the human representation and processing of visual information. WH San Francisco: Freeman and Company.
  16. McCamy and Calvin S., (1992). Correlated colour temperature as an explicit function of chromaticity coordinates. In: Journal of Colour Research & Application, vol. 17, no. 2, pp. 142-144.
  17. Morel, J. M., Petro, A. B., & Sbert, C. (2010). A PDE formalization of retinex theory. Image Processing, IEEE Transactions on, 19(11), 2825-2837.
  18. Parkkinen, J. P., Hallikainen, J., & Jaaskelainen, T. (1989). Characteristic spectra of Munsell colors. JOSA A, 6(2), 318-322.
  19. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., & Greenberg, D. P. (1998, July). A multiscale model of adaptation and spatial vision for realistic image display. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 287- 298). ACM.
  20. Reddy, A. A., Jois, P. R., Deekshitha, J., Namratha, S., & Hegde, R. (2013). Comparison of image enhancement techniques using retinex models 1, 1-6.
  21. Saichandana, B., Ramesh, S., Srinivas, K., & Kirankumar, R. (2014). Image Fusion Technique for Remote Sensing Image Enhancement. In ICT and Critical Infrastructure: Sapiro G., (1999). Colour and illuminant voting. In: IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 21, no. 11, pp. 1210-1215.
  22. Sedky, M., Moniri, M., & Chibelushi, C. C. (2014). Spectral-360: A Physics-Based Technique for Change Detection. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on (pp. 405-408). IEEE.
  23. Watson, A.B. and Solomon, J.A. (1997) Model of Visual Contrast Gain Control and Pattern Masking. J. Opt. Soc. Am. A, 14(9), 2379-2391.
Download


Paper Citation


in Harvard Style

Sedky M., Aly A. and Bosakowski T. (2016). Physics-based and Retina-inspired Technique for Image Enhancement . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 239-247. DOI: 10.5220/0005709902390247


in Bibtex Style

@conference{biosignals16,
author={Mohamed Sedky and Ange A. Malek Aly and Tomasz Bosakowski},
title={Physics-based and Retina-inspired Technique for Image Enhancement},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={239-247},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005709902390247},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Physics-based and Retina-inspired Technique for Image Enhancement
SN - 978-989-758-170-0
AU - Sedky M.
AU - Aly A.
AU - Bosakowski T.
PY - 2016
SP - 239
EP - 247
DO - 10.5220/0005709902390247