Direct Stereo Visual Odometry based on Lines

Thomas Holzmann, Friedrich Fraundorfer, Horst Bischof

2016

Abstract

We propose a novel stereo visual odometry approach, which is especially suited for poorly textured environments. We introduce a novel, fast line segment detector and matcher, which detects vertical lines supported by an IMU. The patches around lines are then used to directly estimate the pose of consecutive cameras by minimizing the photometric error. Our algorithm outperforms state-of-the-art approaches in challenging environments. Our implementation runs in real-time and is therefore well suited for various robotics and augmented reality applications.

References

  1. Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D. G., and Tardos, J. D. (2006). Rawseeds: Robotics advancement through web-publishing of sensorial and elaborated extensive data sets. In International Conference on Intelligent Robots and Systems.
  2. Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci, M., Migliore, D., Rizzi, D., Sorrenti, D. G., and Taddei, P. (2009). Rawseeds ground truth collection systems for indoor self-localization and mapping. Autonomous Robots, 27(4):353-371.
  3. Cortinovis, A. (2010). Pixhawk - attitude and position estimation from vision and imu measurements for quadrotor control. Technical report, Computer Vision and Geometry Lab, Swiss Federal Institute of Technology (ETH) Zurich.
  4. Elqursh, A. and Elgammal, A. M. (2011). Line-based relative pose estimation. In Proceedings IEEE Conference Computer Vision and Pattern Recognition, pages 3049-3056. IEEE Computer Society.
  5. Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam: Large-scale direct monocular slam. In Proceedings European Conference on Computer Vision.
  6. Engel, J., Stückler, J., and Cremers, D. (2015). Large-scale direct slam with stereo cameras. In International Conference on Intelligent Robots and Systems.
  7. Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-direct monocular visual odometry. In International Conference on Robotics and Automation.
  8. Furgale, P., Rehder, J., and Siegwart, R. (2013). Unified temporal and spatial calibration for multi-sensor systems. In International Conference on Intelligent Robots and Systems.
  9. Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings IEEE Conference Computer Vision and Pattern Recognition.
  10. Geiger, A., Ziegler, J., and Stiller, C. (2011). Stereoscan: Dense 3d reconstruction in real-time. In IEEE Intelligent Vehicles Symposion.
  11. Grompone, R., Jakubowicz, J., Morel, J. M., and Randall, G. (2010). Lsd: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4):722-732.
  12. Hofer, M., Maurer, M., and Bischof, H. (2014). Improving sparse 3d models for man-made environments using line-based 3d reconstruction. In International Conference on 3D Vision.
  13. Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar workspaces. In Proceedings International Symposium on Mixed and Augmented Reality.
  14. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. In Quarterly of Applied Mathematics 2, pages 164-168.
  15. Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. S. (2003). An Invitation to 3-D Vision: From Images to Geometric Models. Springer Verlag.
  16. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. In SIAM Journal on Applied Mathematics 11(2), pages 431-441.
  17. Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2010). Rslam: A system for large-scale mapping in constant-time using stereo. In International Journal of Computer Vision.
  18. Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011). Dtam: Dense tracking and mapping in realtime. In Proceedings International Conference on Computer Vision, pages 2320-2327.
  19. Rosten, E. and Drummond, T. (2005). Fusing points and lines for high performance tracking. In Proceedings International Conference on Computer Vision.
  20. Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A benchmark for the evaluation of RGB-D SLAM systems. In International Conference on Intelligent Robots and Systems, pages 573-580.
  21. Weiss, S., Achtelik, M. W., Lynen, S., Achtelik, M. C., Kneip, L., Chli, M., and Siegwart, R. (2013). Monocular vision for long-term micro aerial vehicle state estimation: A compendium. Journal of Field Robotics, 30(5):803-831.
Download


Paper Citation


in Harvard Style

Holzmann T., Fraundorfer F. and Bischof H. (2016). Direct Stereo Visual Odometry based on Lines . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 474-485. DOI: 10.5220/0005715604740485


in Bibtex Style

@conference{visapp16,
author={Thomas Holzmann and Friedrich Fraundorfer and Horst Bischof},
title={Direct Stereo Visual Odometry based on Lines},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={474-485},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005715604740485},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Direct Stereo Visual Odometry based on Lines
SN - 978-989-758-175-5
AU - Holzmann T.
AU - Fraundorfer F.
AU - Bischof H.
PY - 2016
SP - 474
EP - 485
DO - 10.5220/0005715604740485