Flattening of the Lung Surface with Temporal Consistency for the Follow-Up Assessment of Pleural Mesothelioma

Peter Faltin, Thomas Kraus, Marcin Kopaczka, Dorit Merhof

2016

Abstract

Malignant pleural mesothelioma is an aggressive tumor of the lung surrounding membrane. The standardized workflow for the assessment comprises an inspection of 3D CT images to detect pleural thickenings which act as indicators for this tumor. Up to now, the visualization of relevant information from the pleura has only been superficially addressed. Current approaches still utilize a slice-wise visualization which does not allow a global assessment of the lung surface. In this publication, we present an approach which enables a planar 2D visualization of the pleura by flattening its surface. A distortion free mapping to a planar representation is generally not possible. The present method determines a planar representation with low distortions directly from a voxel-based surface. For a meaningful follow-up assessment, the consistent representation of a lung from different points in time is highly important. Therefore, the main focus in this publication is to guarantee a consistent representation of the pleura from the same patient extracted from images taken at two different points in time. This temporal consistency is achieved by our newly proposed link of both surfaces during the flattening process. Additionally, a new initialization method which utilizes a flattened lung prototype speeds up the flattening process.

References

  1. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9):509-517.
  2. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2003). Expression-invariant 3D face recognition. In Audio-and Video-Based Biometric Person Authentication, pages 62-70. Springer.
  3. Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., and Chen, L. (2008). Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics, 17(2):444-472.
  4. Carr, J. C., Fright, W. R., and Beatson, R. K. (1997). Surface interpolation with radial basis functions for medical imaging. IEEE Transactions on Medical Imaging, 16(1):96-107.
  5. Chen, M., Helm, E., Joshi, N., and Brady, M. (2011). Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 1978-1981. IEEE.
  6. Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. CRC Press.
  7. Faltin, P., Chaisaowong, K., Ochsmann, E., and Kraus, T. (2013). Vollautomatische Detektion und Verlaufskontrolle der pleuralen Verdickungen. In 53. Wissenschaftliche Jahrestagung der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e.V. (DGAUM), Arbeitsmedizin in Europa, MuskelSkelett-Erkrankungen und Beruf, page 144, Bregenz (Austria).
  8. Floater, M. S. and Hormann, K. (2005). Surface parameterization: a tutorial and survey. In Advances in multiresolution for geometric modelling, pages 157-186. Springer.
  9. Frauenfelder, T., Tutic, M., Weder, W., Götti, R., Stahel, R., Seifert, B., and Opitz, I. (2011). Volumetry: an alternative to assess therapy response for malignant pleural mesothelioma? European Respiratory Journal, 38(1):162-168.
  10. Gleich, D. F. (2009). Models and Algorithms for PageRank Sensitivity. PhD thesis, Stanford University. Chapter 7 on MatlabBGL.
  11. Glocker, B., Komodakis, N., Paragios, N., and Navab, N. (2010). Non-rigid registration using discrete mrfs: Application to thoracic ct images. In Workshop Evaluation of Methods for Pulmonary Image Registration, MICCAI 2010.
  12. Grossmann, R., Kiryati, N., and Kimmel, R. (2002). Computational surface flattening: a voxel-based approach.
  13. Hurdal, M. K. and Stephenson, K. (2009). Discrete conformal methods for cortical brain flattening. Neuroimage, 45(1):S86-S98.
  14. Kengne Nzegne, P., Faltin, P., Kraus, T., and Chaisaowong, K. (2013). 3D lung surface analysis towards segmentation of pleural thickenings. In Bildverarbeitung für die Medizin 2013, pages 253-258. Springer.
  15. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29(1):1-27.
  16. Morse, B. S., Yoo, T. S., Rheingans, P., Chen, D. T., and Subramanian, K. R. (2005). Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In Proc. ACM SIGGRAPH, pages 78-87. ACM.
  17. Navon, I. and Legler, D. M. (1987). Conjugate-gradient methods for large-scale minimization in meteorology. Monthly Weather Review, 115(8):1479-1502.
  18. Neubeck, A. and Gool, L. J. V. (2006). Efficient nonmaximum suppression. In Proc. of International Conference on Pattern Recognition, pages 850-855.
  19. Ochsmann, E., Carl, T., Brand, P., Raithel, H., and Kraus, T. (2010). Inter-reader variability in chest radiography and HRCT for the early detection of asbestosrelated lung and pleural abnormalities in a cohort of 636 asbestos-exposed subjects. INT ARCH OCC ENV HEA, 83:39-46.
  20. Pistolesi, M. and Rusthoven, J. (2004). Malignant pleural mesothelioma: Update, current management, and newer therapeutic strategies. Chest, 126(4):1318- 1329.
  21. Rudrapatna, M., Mai, V., Sowmya, A., and Wilson, P. (2005). Knowledge-driven automated detection of pleural plaques and thickening in high resolution CT of the lung. In Information Processing in Medical Imaging, pages 147-167. Springer.
  22. Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., and Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18:712-721.
  23. Saroul, L., Figueiredo, O., and Hersch, R. D. (2006). Distance preserving flattening of surface sections. IEEE Transactions on Visualization and Computer Graphics, 12(1):26-35.
  24. Sensakovic, W. F., Armato III, S. G., Straus, C., Roberts, R. Y., Caligiuri, P., Starkey, A., and Kindler, H. L. (2011). Computerized segmentation and measurement of malignant pleural mesothelioma. Medical physics, 38(1):238-244.
  25. Tosun, D., Rettmann, M. E., and Prince, J. L. (2004). Mapping techniques for aligning sulci across multiple brains. Medical image analysis, 8(3):295-309.
  26. Virta, R. L. (2012). 2012 Minerals Yearbook. U.S. Department of the Interior, U.S. Geological Survey.
  27. Zhao, X., Su, Z., Gu, X. D., Kaufman, A., Sun, J., Gao, J., and Luo, F. (2013). Area-preservation mapping using optimal mass transport. Visualization and Computer Graphics, IEEE Transactions on, 19(12):2838-2847.
  28. Zigelman, G., Kimmel, R., and Kiryati, N. (2002). Texture mapping using surface flattening via multidimensional scaling. Visualization and Computer Graphics, IEEE Transactions on, 8(2):198-207.
Download


Paper Citation


in Harvard Style

Faltin P., Kraus T., Kopaczka M. and Merhof D. (2016). Flattening of the Lung Surface with Temporal Consistency for the Follow-Up Assessment of Pleural Mesothelioma . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 233-243. DOI: 10.5220/0005718702330243


in Bibtex Style

@conference{ivapp16,
author={Peter Faltin and Thomas Kraus and Marcin Kopaczka and Dorit Merhof},
title={Flattening of the Lung Surface with Temporal Consistency for the Follow-Up Assessment of Pleural Mesothelioma},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016)},
year={2016},
pages={233-243},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005718702330243},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016)
TI - Flattening of the Lung Surface with Temporal Consistency for the Follow-Up Assessment of Pleural Mesothelioma
SN - 978-989-758-175-5
AU - Faltin P.
AU - Kraus T.
AU - Kopaczka M.
AU - Merhof D.
PY - 2016
SP - 233
EP - 243
DO - 10.5220/0005718702330243