Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling

Bernhard Egger, Dinu Kaufmann, Sandro Schönborn, Volker Roth, Thomas Vetter

2016

Abstract

Principal component analysis is a ubiquitous method in parametric appearance modeling for describing dependency and variance in a data set. The method requires that the observed data be Gaussian-distributed. We show that this requirement is not fulfilled in the context of analysis and synthesis of facial appearance. The model mismatch leads to unnatural artifacts which are severe to human perception. In order to prevent these artifacts, we propose to use a semiparametric Gaussian copula model, where dependency and variance are modeled separately. The Gaussian copula enables us to use arbitrary Gaussian and non-Gaussian marginal distributions. The new flexibility provides scale invariance and robustness to outliers as well as a higher specificity in generated images. Moreover, the new model makes possible a combined analysis of facial appearance and shape data. In practice, the proposed model can easily enhance the performance obtained by principal component analysis in existing pipelines: The steps for analysis and synthesis can be implemented as convenient pre- and post-processing steps.

References

  1. Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 187-194. ACM Press/AddisonWesley Publishing Co.
  2. Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998). Active appearance models. In Computer VisionECCV98, pages 484-498. Springer.
  3. Edwards, G. J., Lanitis, A., Taylor, C. J., and Cootes, T. F. (1998). Statistical models of face imagesimproving specificity. Image and Vision Computing, 16(3):203- 211.
  4. Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82(3):543-552.
  5. Han, F. and Liu, H. (2012). Semiparametric principal component analysis. In Advances in Neural Information Processing Systems, pages 171-179.
  6. Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.
  7. Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.
  8. Lothar Sachs, J. H. (2006). Angewandte Statistik. Springer Berlin Heidelberg, 7 edition.
  9. Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical Association, 46(253):68-78.
  10. Mohammed, U., Prince, S. J., and Kautz, J. (2009). Visiolization: generating novel facial images. ACM Transactions on Graphics (TOG), 28(3):57.
  11. Nelsen, R. B. (2013). An introduction to copulas, volume 139. Springer Science & Business Media.
  12. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., and Vetter, T. (2009). A 3d face model for pose and illumination invariant face recognition. In Advanced Video and Signal Based Surveillance, 2009. AVSS'09. Sixth IEEE International Conference On, pages 296-301. IEEE.
  13. Rasmussen, C. E. (1999). The infinite gaussian mixture model. In NIPS, volume 12, pages 554-560.
  14. Schönborn, S., Forster, A., Egger, B., and Vetter, T. (2013). A monte carlo strategy to integrate detection and model-based face analysis. In Pattern Recognition, pages 101-110. Springer.
  15. Schumacher, M. and Blanz, V. (2015). Exploration of the correlations of attributes and features in faces. In Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, pages 1-8. IEEE.
  16. Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. JOSA A, 4(3):519-524.
  17. Styner, M. A., Rajamani, K. T., Nolte, L.-P., Zsemlye, G., Székely, G., Taylor, C. J., and Davies, R. H. (2003). Evaluation of 3d correspondence methods for model building. In Information processing in medical imaging, pages 63-75. Springer.
  18. Tsukahara, H. (2005). Semiparametric estimation in copula models. Canadian Journal of Statistics, 33(3):357- 375.
  19. Turk, M., Pentland, A. P., et al. (1991). Face recognition using eigenfaces. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91., IEEE Computer Society Conference on, pages 586-591. IEEE.
  20. Walker, M. and Vetter, T. (2009). Portraits made to measure: Manipulating social judgments about individuals with a statistical face model. Journal of Vision, 9(11):12.
Download


Paper Citation


in Harvard Style

Egger B., Kaufmann D., Schönborn S., Roth V. and Vetter T. (2016). Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 50-58. DOI: 10.5220/0005718800480056


in Bibtex Style

@conference{grapp16,
author={Bernhard Egger and Dinu Kaufmann and Sandro Schönborn and Volker Roth and Thomas Vetter},
title={Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={50-58},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005718800480056},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling
SN - 978-989-758-175-5
AU - Egger B.
AU - Kaufmann D.
AU - Schönborn S.
AU - Roth V.
AU - Vetter T.
PY - 2016
SP - 50
EP - 58
DO - 10.5220/0005718800480056