Leveraging Gabor Phase for Face Identification in Controlled Scenarios

Yang Zhong, Haibo Li

2016

Abstract

Gabor features have been widely employed in solving face recognition problems in controlled scenarios. To construct discriminative face features from the complex Gabor space, the amplitude information is commonly preferred, while the other one — the phase — is not well utilized due to its spatial shift sensitivity. In this paper, we address the problem of face recognition in controlled scenarios. Our focus is on the selection of a suitable signal representation and the development of a better strategy for face feature construction. We demonstrate that through our Block Matching scheme Gabor phase information is powerful enough to improve the performance of face identification. Compared to state of the art Gabor filtering based approaches, the proposed algorithm features much lower algorithmic complexity. This is mainly due to our Block Matching enables the employment of high definition Gabor phase. Thus, a single-scale Gabor frequency band is sufficient for discrimination. Furthermore, learning process is not involved in the facial feature construction, which avoids the risk of building a database-dependent algorithm. Benchmark evaluations show that the proposed learning-free algorithm outperforms state-of-the-art Gabor approaches and is even comparable to Deep Learning solutions.

References

  1. Ahonen, T., Hadid, A., and Pietikinen, M. (2004). Face recognition with local binary patterns. In Pajdla, T. and Matas, J., editors, Computer Vision - ECCV 2004, volume 3021 of Lecture Notes in Computer Science, pages 469-481. Springer Berlin Heidelberg.
  2. Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(7):711- 720.
  3. Cament, L. A., Castillo, L. E., Perez, J. P., Galdames, F. J., and Perez, C. A. (2014). Fusion of local normalization and gabor entropy weighted features for face identification. Pattern Recognition, 47(2):568-577.
  4. Cao, X., Wei, Y., Wen, F., and Sun, J. (2014). Face alignment by explicit shape regression. International Journal of Computer Vision, 107(2):177-190.
  5. Chai, Z., Sun, Z., Mendez-Vazquez, H., He, R., and Tan, T. (2014). Gabor ordinal measures for face recognition. Information Forensics and Security, IEEE Transactions on, 9(1):14-26.
  6. Chan, C. H., Tahir, M. A., Kittler, J., and Pietikainen, M. (2013). Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(5):1164-1177.
  7. Chen, D., Cao, X., Wang, L., Wen, F., and Sun, J. (2012). Bayesian face revisited: A joint formulation. In Computer Vision-ECCV 2012 , pages 566-579. Springer.
  8. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886- 893. IEEE.
  9. Daugman, J. (2004). How iris recognition works. Circuits and Systems for Video Technology, IEEE Transactions on, 14(1):21-30.
  10. Daugman, J. (2006). Probing the uniqueness and randomness of iriscodes: Results from 200 billion iris pair comparisons. Proceedings of the IEEE, 94(11):1927- 1935.
  11. Gao, Y., Wang, Y., Zhu, X., Feng, X., and Zhou, X. (2006). Weighted gabor features in unitary space for face recognition. In Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on, pages 6-pp. IEEE.
  12. Givens, G. H., Beveridge, J. R., Lui, Y. M., Bolme, D. S., Draper, B. A., and Phillips, P. J. (2013). Biometric face recognition: from classical statistics to future challenges. Wiley Interdisciplinary Reviews: Computational Statistics, 5(4):288-308.
  13. Hua, G. and Akbarzadeh, A. (2009). A robust elastic and partial matching metric for face recognition. In Computer Vision, 2009 IEEE 12th International Conference on, pages 2082-2089. IEEE.
  14. Huang, G., Lee, H., and Learned-Miller, E. (2012). Learning hierarchical representations for face verification with convolutional deep belief networks. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2518-2525.
  15. Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst.
  16. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093.
  17. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc.
  18. Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R. P., and Konen, W. (1993). Distortion invariant object recognition in the dynamic link architecture. Computers, IEEE Transactions on, 42(3):300-311.
  19. Li, H., Hua, G., Lin, Z., Brandt, J., and Yang, J. (2013). Probabilistic elastic matching for pose variant face verification. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3499- 3506. IEEE.
  20. Liu, C. and Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Image processing, IEEE Transactions on, 11(4):467-476.
  21. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  22. Mu, M., Ruan, Q., and Guo, S. (2011). Shift and gray scale invariant features for palmprint identification using complex directional wavelet and local binary pattern. Neurocomputing, 74(17):3351-3360.
  23. Oppenheim, A. V. and Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5):529- 541.
  24. Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. Proceedings of the British Machine Vision Conference.
  25. Carlo, J. J., and Cox, D. D. (2009). How far can you get with a modern face recognition test set using only simple features? In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2591-2598. IEEE.
  26. Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 815-823.
  27. Sim, T., Baker, S., and Bsat, M. (2002). The cmu pose, illumination, and expression (pie) database. In Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on, pages 46-51. IEEE.
  28. Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.
  29. Su, Y., Shan, S., Chen, X., and Gao, W. (2009). Hierarchical ensemble of global and local classifiers for face recognition. Image Processing, IEEE Transactions on, 18(8):1885-1896.
  30. Sun, Y., Wang, X., and Tang, X. (2013). Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1891-1898.
  31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with convolutions. Computer Vision, 2014 IEEE 12th International Conference on.
  32. Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2013). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1701-1708.
  33. Tan, X. and Triggs, B. (2007). Fusing gabor and lbp feature sets for kernel-based face recognition. In Analysis and Modeling of Faces and Gestures, pages 235-249. Springer.
  34. Turk, M. A. and Pentland, A. P. (1991). Face recognition using eigenfaces. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91., IEEE Computer Society Conference on, pages 586-591. IEEE.
  35. Vedaldi, A. and Lenc, K. (2014). Matconvnetconvolutional neural networks for matlab. arXiv preprint arXiv:1412.4564.
  36. Wiskott, L., Fellous, J.-M., Kuiger, N., and Von Der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(7):775-779.
  37. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2):210-227.
  38. Xie, S., Shan, S., Chen, X., and Chen, J. (2010). Fusing local patterns of gabor magnitude and phase for face recognition. Image Processing, IEEE Transactions on, 19(5):1349-1361.
  39. Yang, M., Zhang, L., Shiu, S.-K., and Zhang, D. (2013). Robust kernel representation with statistical local features for face recognition. Neural Networks and Learning Systems, IEEE Transactions on, 24(6):900- 912.
  40. Yi, D., Lei, Z., and Li, S. Z. (2013). Towards pose robust face recognition. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3539-3545. IEEE.
  41. Yi, D., Lei, Z., Liao, S., and Li, S. Z. (2014). Learning face representation from scratch. arXiv preprint arXiv:1411.7923.
  42. Zhang, B., Gao, Y., Zhao, S., and Liu, J. (2010). Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. Image Processing, IEEE Transactions on, 19(2):533- 544.
  43. Zhang, B., Shan, S., Chen, X., and Gao, W. (2007). Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. Image Processing, IEEE Transactions on, 16(1):57-68.
  44. Zhang, W., Shan, S., Gao, W., Chen, X., and Zhang, H. (2005). Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 1, pages 786-791. IEEE.
  45. Zhang, W., Shan, S., Qing, L., Chen, X., and Gao, W. (2009). Are gabor phases really useless for face recognition? Pattern Analysis and Applications, 12(3):301- 307.
  46. Zhong, Y. and Li, H. (2014). Is block matching an alternative tool to lbp for face recognition? In Image Processing (ICIP), 2014 IEEE International Conference on, pages 723-727.
  47. Zou, J., Ji, Q., and Nagy, G. (2007). A comparative study of local matching approach for face recognition. Image Processing, IEEE Transactions on, 16(10):2617- 2628.
Download


Paper Citation


in Harvard Style

Zhong Y. and Li H. (2016). Leveraging Gabor Phase for Face Identification in Controlled Scenarios . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 49-58. DOI: 10.5220/0005723700490058


in Bibtex Style

@conference{visapp16,
author={Yang Zhong and Haibo Li},
title={Leveraging Gabor Phase for Face Identification in Controlled Scenarios},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={49-58},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005723700490058},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - Leveraging Gabor Phase for Face Identification in Controlled Scenarios
SN - 978-989-758-175-5
AU - Zhong Y.
AU - Li H.
PY - 2016
SP - 49
EP - 58
DO - 10.5220/0005723700490058