Robust Background Modeling and Foreground Detection using Dynamic Textures

M. Sami Zitouni, Harish Bhaskar, Mohammed Al-Mualla

2016

Abstract

In this paper, a dynamic background modeling and hence foreground detection technique using a Gaussian Mixture Model (GMM) of spatio-temporal patches of dynamic texture (DT) is proposed. Existing methods for background modeling cannot adequately distinguish movements in both background and foreground, that usually characterizes any dynamic scene. Therefore, in most of these methods, the separation of the background from foreground requires precise tuning of parameters or an apriori model of the foreground. The proposed method aims to differentiate between global from local motion by attributing the video using spatio-temporal patches of DT modeled using a typical GMM framework. In addition to alleviating the aforementioned limitations, the proposed method can cope with complex dynamic scenes without the need for training or parameter tuning. Qualitative and quantitative analysis of the method compared against competing baselines have demonstrated the superiority of the method and the robustness against dynamic variations in the background.

References

  1. Bhaskar, H., Mihaylova, L., and Maskell, S. (2007). Background modeling using adaptive cluster density estimation for automatic human detection. Informatics 2, pages 130-134.
  2. Chan, A., Mahadevan, V., and Vasconcelos, N. (2011). Generalized stauffer-grimson background subtraction for dynamic scenes. Machine Vision and Applications, 22(5):751-766.
  3. Chan, A. and Vasconcelos, N. (2009). Layered dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(10):1862-1879.
  4. Dalley, G., Migdal, J., and Grimson, W. (2008). Background subtraction for temporally irregular dynamic textures. WACV.
  5. Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S. (2003). Dynamic textures. International Journal of Computer Vision, 51:91-109.
  6. Ferryman, J. and Shahrokni, A. (2009). Pets2009: Dataset and challenge. Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.
  7. Goyette, N., Jodoin, P., Porikli, F., Konrad, J., and Ishwar, P. (2012). Changedetection.net: A new change detection benchmark dataset. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1-8.
  8. Heikkila, M. and Pietikainen, M. (2006). A texture-based method for modeling the background and detecting moving objects. IEEE TPAMI, 28(4):657-662.
  9. Mumtaz, A., Zhang, W., and Chan, A. B. (2014). Joint motion segmentation and background estimation in dynamic scenes. CVPR, pages 368-375.
  10. Otsu, N. (1979). A threshold selection method from graylevel histograms. IEEE TSMC, 9(1):62-66.
  11. Pokrajac, D. and Latecki, L. J. (2003). Spatiotemporal blocks-based moving objects identification and tracking. IEEE Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS), pages 70-77.
  12. Stauffer, C. and Grimson, E. (2000). Learning patterns of activity using realtime tracking. IEEE TPAMI, 22(8):747-757.
  13. Stauffer, C. and Grimson, W. (1999). Adaptive background mixture models for real-time tracking. CVPR, 2.
  14. Tian, Y.-L. and Hampapur, A. (2008). Robust salient motion detection with complex background for real-time video surveillance. WACV/MOTIONS.
  15. Zhang, S., Yao, H., and Liu, S. (2009). Spatial-temporal nonparametric background subtraction in dynamic scenes. ICME, pages 518-521.
  16. Zhong, B., Liu, S., Yao, H., and Zhang, B. (2009). Multl-resolution background subtraction for dynamic scenes. pages 3193-3196.
  17. Zhong, J. and Sclaroff, S. (2003). Segmenting foreground objects from a dynamic textured background via a robust kalman filter. ICCV, 1:44-50.
  18. Zhou, X., Yang, C., and Yu, W. (2013). Moving object detection by detecting contiguous outliers in the lowrank representation. IEEE TPAMI, 35(3).
Download


Paper Citation


in Harvard Style

Zitouni M., Bhaskar H. and Al-Mualla M. (2016). Robust Background Modeling and Foreground Detection using Dynamic Textures . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 403-410. DOI: 10.5220/0005724204030410


in Bibtex Style

@conference{visapp16,
author={M. Sami Zitouni and Harish Bhaskar and Mohammed Al-Mualla},
title={Robust Background Modeling and Foreground Detection using Dynamic Textures},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={403-410},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005724204030410},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - Robust Background Modeling and Foreground Detection using Dynamic Textures
SN - 978-989-758-175-5
AU - Zitouni M.
AU - Bhaskar H.
AU - Al-Mualla M.
PY - 2016
SP - 403
EP - 410
DO - 10.5220/0005724204030410