Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene

Houda Maâmatou, Thierry Chateau, Sami Gazzah, Yann Goyat, Najoua Essoukri Ben Amara

2016

Abstract

In this paper, we tackle the problem of domain adaptation to perform object-classification and detection tasks in video surveillance starting by a generic trained detector. Precisely, we put forward a new transductive transfer learning framework based on a sequential Monte Carlo filter to specialize a generic classifier towards a specific scene. The proposed algorithm approximates iteratively the target distribution as a set of samples (selected from both source and target domains) which feed the learning step of a specialized classifier. The output classifier is applied to pedestrian detection into a traffic scene. We have demonstrated by many experiments, on the CUHK Square Dataset and the MIT Traffic Dataset, that the performance of the specialized classifier outperforms the generic classifier and that the suggested algorithm presents encouraging results.

References

  1. Aytar, Y. and Zisserman, A. (2011). Tabula rasa: Model transfer for object category detection. In ICCV, pages 2252-2259. IEEE.
  2. Chesnais, T., Allezard, N., Dhome, Y., and Chateau, T. (2012). Automatic process to build a contextualized detector. In VISAPP, volume 1, pages 513-520. SciTePress.
  3. Dai, W., Yang, Q., Xue, G.-R., and Yu, Y. (2007). Boosting for transfer learning. In ICML, pages 193-200. ACM.
  4. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR, volume 1, pages 886-893. IEEE.
  5. Doucet, A., De Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. Springer.
  6. Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. IJCV, 88(2):303-338.
  7. Isard, M. and Blake, A. (1998). Condensationconditional density propagation for visual tracking. IJCV, 29(1):5-28.
  8. Levin, A., Viola, P., and Freund, Y. (2003). Unsupervised improvement of visual detectors using cotraining. In CV, pages 626-633. IEEE.
  9. NIPS. M., Wang, J., Ding, G., Sun, J., and Yu, P. S. (2013). Transfer feature learning with joint distribution adaptation. In ICCV, pages 2200-2207.
  10. Mei, X. and Ling, H. (2011). Robust visual tracking and vehicle classification via sparse representation. PAMI, 33(11):2259-2272.
  11. Nair, V. and Clark, J. J. (2004). An unsupervised, online learning framework for moving object detection. In CVPR, volume 2, pages II-317. IEEE.
  12. Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Domain adaptation via transfer component analysis. NN, 22(2):199-210.
  13. Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. KDE, 22(10):1345-1359.
  14. Pang, J., Huang, Q., Yan, S., Jiang, S., and Qin, L. (2011). Transferring boosted detectors towards viewpoint and scene adaptiveness. IP, 20(5):1388-1400.
  15. Quanz, B., Huan, J., and Mishra, M. (2012). Knowledge transfer with low-quality data: A feature extraction issue. KDE, 24(10):1789-1802.
  16. Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised self-training of object detection models. In WACV. IEEE Press.
  17. Salakhutdinov, R., Tenenbaum, J., and Torralba, A. (2010). One-shot learning with a hierarchical nonparametric bayesian model. JMLR - UTL, 27:195-207.
  18. Smal, I., Niessen, W., and Meijering, E. (2007). Advanced particle filtering for multiple object tracking in dynamic fluorescence microscopy images. In BIFNM, pages 1048-1051. IEEE.
  19. Tang, K., Ramanathan, V., Fei-Fei, L., and Koller, D. (2012). Shifting weights: Adapting object detectors from image to video. In ANIPS, pages 638-646.
  20. Tommasi, T., Orabona, F., and Caputo, B. (2010). Safety in numbers: Learning categories from few examples with multi model knowledge transfer. In CVPR, pages 3081-3088. IEEE.
  21. Viola, P. and Jones, M. (2001). Robust real-time object detection. IJCV, 4:51-52.
  22. Wang, M., Li, W., and Wang, X. (2012a). Transferring a generic pedestrian detector towards specific scenes. In CVPR, pages 3274-3281. IEEE.
  23. Wang, M. and Wang, X. (2011). Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In CVPR, pages 3401-3408. IEEE.
  24. Wang, X., Hua, G., and Han, T. X. (2012b). Detection by detections: Non-parametric detector adaptation for a video. In CVPR, pages 350-357. IEEE.
  25. Wang, X., Ma, X., and Grimson, W. E. L. (2009). Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. PAMI, 31(3):539-555.
  26. Wang, X., Wang, M., and Li, W. (2014). Scene-specific pedestrian detection for static video surveillance. PAMI, 36(2):361-374.
  27. Yang, J., Yan, R., and Hauptmann, A. G. (2007). Cross-domain video concept detection using adaptive svms. In ICM, pages 188-197. ACM.
  28. Zeng, X., Ouyang, W., Wang, M., and Wang, X. (2014). Deep learning of scene-specific classifier for pedestrian detection. In CV-ECCV , pages 472-487. Springer.
Download


Paper Citation


in Harvard Style

Maâmatou H., Chateau T., Gazzah S., Goyat Y. and Essoukri Ben Amara N. (2016). Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 411-422. DOI: 10.5220/0005725104110422


in Bibtex Style

@conference{visapp16,
author={Houda Maâmatou and Thierry Chateau and Sami Gazzah and Yann Goyat and Najoua Essoukri Ben Amara},
title={Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={411-422},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005725104110422},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene
SN - 978-989-758-175-5
AU - Maâmatou H.
AU - Chateau T.
AU - Gazzah S.
AU - Goyat Y.
AU - Essoukri Ben Amara N.
PY - 2016
SP - 411
EP - 422
DO - 10.5220/0005725104110422