NUMERICAL ANALYSIS OF A NEW POLYMER PHOTONIC CRYSTAL FIBER FOR SENSING APPLICATIONS

Issam Haddouche, Cherbi lynda

2016

Abstract

In this paper a new sensor design based on the enhancement of the evanescent field of the propagating modes is presented, the sensor is a modified Photonic Crystal Fiber (PCF) with Teflon AF used as a background material. Assessment of the sensor's performance is made by calculating Confinement loss of the waveguide. Full-Vector Finite Element Method is used throughout the analysis. Results show a remarkable enhancement in the evanescent field for this sensor compared with standard PCF waveguide.

References

  1. L. Mescia, F. Prudenzano, L. Allegretti, 2009. Design of silica based photonic crystal fiber for biosensing applications, Journal of Non-Crystalline Solids 355.
  2. Coscelli, E, M. Sozzi, F. Poli, 2010. Toward A Highly Specific DNA Biosensor: PNA-Modified SuspendedCore Photonic Crystal Fibers, IEEE Journal of Quantum Electronics, Vol. 16, No. 4, 967-972.
  3. Saitoh, K, M. Koshiba, 2002. Full-vectorial imaginarydistance beam propagation method, IEEE Journal of Quantum Electronics, Vol. 38, No. 7, 927-933.
  4. Yang, M. K., R. H. French, E. W. Tokarsky, 2008. Optical properties of Teflon® AF amorphous fluoropolymers, J. Micro/Nanolith. MEMS MOEMS, Vol. 7, No. 3, 1- 9.
  5. S. Yin, C. Zhan, P. Ruffin, 2008. Fiber optic sensors.
  6. Koshiba, M, S. Maruyama, K. Hirayama, 1994. A vector finite element method with the high-order mixedinterpolation-type triangular elements, Journal of lightwave technology, Vol. 12, No. 3, 495-502.
  7. Koshiba, M, Y. Tsuji, 2000. Curvilinear hybrid edge/nodal elements with triangular shape for guidedwave problems, Journal of lightwave technology, Vol. 18, No. 5, 737-743.
  8. Berenger, J., 1993. A perfectly matched layer for the absorption of Electromagnetic waves, Journal of computational physics, Vol. 114, 185-200.
  9. Saitoh, K, M. Koshiba, T. Hasegawa, E. Sasaoka, 2003. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Optics express, Vol. 11, No. 8, 843-852.
  10. Viale, P, S. Février, F. Gérome, H. Vilard, 2005. Confinement Loss Computations in Photonic Crystal Fibres using a Novel Perfectly Matched Layer Design, COMSOL Multiphysics User's Conference Paris.
  11. Saitoh, K, M. Koshiba, 2005.Numerical Modeling of Photonic Crystal Fibers, Journal Of Lightwave Technology, Vol. 23, No. 11, 3580- 3590, November.
  12. G. P. Agrawal, 2002. Fiber-Optic Communications Systems, Third Edition, Wiley, pp. 33-37.
Download


Paper Citation


in Harvard Style

Haddouche I. and lynda C. (2016). NUMERICAL ANALYSIS OF A NEW POLYMER PHOTONIC CRYSTAL FIBER FOR SENSING APPLICATIONS . In - PHOTOPTICS, ISBN , pages 0-0. DOI: 10.5220/0005742500000000


in Bibtex Style

@conference{photoptics16,
author={Issam Haddouche and Cherbi lynda},
title={NUMERICAL ANALYSIS OF A NEW POLYMER PHOTONIC CRYSTAL FIBER FOR SENSING APPLICATIONS},
booktitle={ - PHOTOPTICS,},
year={2016},
pages={},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005742500000000},
isbn={},
}


in EndNote Style

TY - CONF
JO - - PHOTOPTICS,
TI - NUMERICAL ANALYSIS OF A NEW POLYMER PHOTONIC CRYSTAL FIBER FOR SENSING APPLICATIONS
SN -
AU - Haddouche I.
AU - lynda C.
PY - 2016
SP - 0
EP - 0
DO - 10.5220/0005742500000000