Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data
Sebastian Vlaic, Robert Altwasser, Peter Kupfer, Carol L. Nilsson, Mark Emmett, Anke Meyer-Baese, Reinhard Guthke
2016
Abstract
In the field of transcriptomics data the automated inference of predictive gene regulatory networks from high-throughput data is a common approach for the identification of novel genes with potential therapeutic value. Sophisticated methods have been developed that extensively make use of diverse sources of prior-knowledge to obtain biologically relevant hypotheses. Transferring such concepts to the field of phosphoproteomics data has the potential to reveal new insights into phosphorylation-related signaling mechanisms. In this study we conceptually adapt the TILAR network inference algorithm for the inference of a phospho-regulatory network. Therefore, we use published phosphoproteomics data of WP1193 treated and IL6-stimulated glioblastoma stem cells under normoxic and hypoxic condition. Peptides corresponding to 21 differentially phosphorylated proteins were used for network inference. Topological analysis of the phospho-regulatory network suggests lamin B2 (LMNB2) and spectrin, beta, non-erythrocytic 1 (SPTBN1) as potential hub-proteins associated with the alteration of phosphorylation under the observed conditions. Altogether, our results show that inference of phospho-regulatory networks can aid in the understanding of complex molecular mechanisms and cellular processes of biological systems.
References
- Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L., and Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev, 22(7):832-853.
- Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals of statistics, 32(2):407-499.
- Hecker, M., Goertsches, R. H., Engelmann, R., Thiesen, H.- J., and Guthke, R. (2009a). Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinformatics, 10:262.
- Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R. (2009b). Gene regulatory network inference: data integration in dynamic models-a review. Biosystems, 96(1):86-103.
- Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., and Sullivan, M. (2012). Phosphositeplus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res, 40(Database issue):D261-D270.
- Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc, 4(1):44-57.
- Jørgensen, C. and Linding, R. (2008). Directional and quantitative phosphorylation networks. Brief Funct Genomic Proteomic, 7(1):17-26.
- Linding, R., Jensen, L. J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M. B., and Pawson, T. (2008). Networkin: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res, 36(Database issue):D695-D699.
- Mallows, C. L. (1973). Some comments on c p. Technometrics, 15(4):661-675.
- Manno, S., Takakuwa, Y., Nagao, K., and Mohandas, N. (1995). Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem, 270(10):5659- 5665.
- Nikitin, A., Egorov, S., Daraselia, N., and Mazo, I. (2003). Pathway studiothe analysis and navigation of molecular networks. Bioinformatics, 19(16):2155-2157.
- Nilsson, C. L., Dillon, R., Devakumar, A., Shi, S. D.-H., Greig, M., Rogers, J. C., Krastins, B., Rosenblatt, M., Kilmer, G., Major, M., Kaboord, B. J., Sarracino, D., Rezai, T., Prakash, A., Lopez, M., Ji, Y., Priebe, W., Lang, F. F., Colman, H., and Conrad, C. A. (2010). Quantitative phosphoproteomic analysis of the stat3/il-6/hif1alpha signaling network: an initial study in gsc11 glioblastoma stem cells. J Proteome Res, 9(1):430-443.
- Pai, C. Y., Chen, H. K., Sheu, H. L., and Yeh, N. H. (1995). Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. J Cell Sci, 108 ( Pt 5):1911-1920.
- R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rombouts, K., Mello, T., Liotta, F., Galli, A., Caligiuri, A., Annunziato, F., and Pinzani, M. (2012). Marcks actin-binding capacity mediates actin filament assembly during mitosis in human hepatic stellate cells. Am J Physiol Cell Physiol, 303(4):C357-C367.
- Sahlgren, C. M., Mikhailov, A., Hellman, J., Chou, Y. H., Lendahl, U., Goldman, R. D., and Eriksson, J. E. (2001). Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem, 276(19):16456-16463.
- Seet, B. T., Dikic, I., Zhou, M.-M., and Pawson, T. (2006). Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol, 7(7):473-483.
- Smith, N. L. and Miskimins, W. K. (2011). Phosphorylation at serine 482 affects stability of nf90 and its functional role in mitosis. Cell Prolif, 44(2):147-155.
- Solow, S., Salunek, M., Ryan, R., and Lieberman, P. M. (2001). Taf(ii) 250 phosphorylates human transcription factor iia on serine residues important for tbp binding and transcription activity. J Biol Chem, 276(19):15886-15892.
- Sparks, C. A., Fey, E. G., Vidair, C. A., and Doxsey, S. J. (1995). Phosphorylation of numa occurs during nuclear breakdown and not mitotic spindle assembly. J Cell Sci, 108 ( Pt 11):3389-3396.
- Spiliotis, E. T., Kinoshita, M., and Nelson, W. J. (2005). A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science, 307(5716):1781-1785.
- Terfve, C. and Saez-Rodriguez, J. (2012). Modeling signaling networks using high-throughput phosphoproteomics. Adv Exp Med Biol, 736:19-57.
- Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., and Yao, X. (2008). Gps 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics, 7(9):1598-1608.
- Yang, X.-J. (2005). Multisite protein modification and intramolecular signaling. Oncogene, 24(10):1653- 1662.
Paper Citation
in Harvard Style
Vlaic S., Altwasser R., Kupfer P., Nilsson C., Emmett M., Meyer-Baese A. and Guthke R. (2016). Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 85-91. DOI: 10.5220/0005743000850091
in Bibtex Style
@conference{bioinformatics16,
author={Sebastian Vlaic and Robert Altwasser and Peter Kupfer and Carol L. Nilsson and Mark Emmett and Anke Meyer-Baese and Reinhard Guthke},
title={Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016)},
year={2016},
pages={85-91},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005743000850091},
isbn={978-989-758-170-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016)
TI - Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data
SN - 978-989-758-170-0
AU - Vlaic S.
AU - Altwasser R.
AU - Kupfer P.
AU - Nilsson C.
AU - Emmett M.
AU - Meyer-Baese A.
AU - Guthke R.
PY - 2016
SP - 85
EP - 91
DO - 10.5220/0005743000850091