A Stochastic Version of the Ramsey’s Growth Model
Gabriel Zacarías-Espinoza, Hugo Cruz-Suárez, Enrique Lemus-Rodríguez
2016
Abstract
In this paper we study a version of Ramsey’s discrete time Growth Model where the evolution of Labor through time is stochastic. Taking advantage of recent theoretical results in the field of Markov Decision Processes, a first set of conditions on the model are established that guarantee a long-term stable behavior of the underlying Markov chain.
References
- Brida, J. G., Cayssials, G., and Pereyra, J. S. (2015). The discrete Ramsey model with decreasing population growth rate. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 22(2):97-115.
- Cruz-Suárez, H. and Montes-de Oca, R. (2008). An envelope theorem and some applications to discounted Markov decision processes. Math. Methods Oper. Res., 67(2):299-321.
- Cruz-Suárez, H., Montes-de Oca, R., and Zacarías, G. (2011). A consumption-investment problem modelled as a discounted Markov decision process. Kybernetika (Prague), 47(6):909-929.
- Cruz-Suárez, H., Zacarías-Espinoza, G., and V ázquezGuevara, V. (2012). A version of the Euler equation in discounted Markov decision processes. J. Appl. Math., pages Art. ID 103698, 16.
- Ekeland, I. (2010). From Frank Ramsey to René Thom: a classical problem in the calculus of variations leading to an implicit differential equation. Discrete Contin. Dyn. Syst., 28(3):1101-1119.
- Hernández-Lerma, O. and Lasserre, J. B. (1996). Discretetime Markov control processes, volume 30 of Applications of Mathematics (New York). Springer-Verlag, New York. Basic optimality criteria.
- Jaskiewicz, A. and Nowak, A. S. (2011). Discounted dynamic programming with unbounded returns: application to economic models. J. Math. Anal. Appl., 378(2):450-462.
- Kamihigashi, T. (2006). Almost sure convergence to zero in stochastic growth models. Economic Theory, 29(1):231-237.
- Le Van, C. and Dana, R.-A. (2003). Dynamic programming in economics, volume 5 of Dynamic Modeling and Econometrics in Economics and Finance. Kluwer Academic Publishers, Dordrecht.
- Meyn, S. and Tweedie, R. L. (2009). Markov chains and stochastic stability. Cambridge University Press, Cambridge, second edition. With a prologue by Peter W. Glynn.
- Nishimura, K. and Stachurski, J. (2005). Stability of stochastic optimal growth models: a new approach. J. Econom. Theory, 122(1):100-118.
- Peligrad, M. and Gut, A. (1999). Almost-sure results for a class of dependent random variables. J. Theoret. Probab., 12(1):87-104.
- Ramsey, F. (1928). A matemathical theory of saving. Econ. J., 38:543-559.
- SladkÉ, K. (2012). Some remarks on stochastic version of the ramsey growth model. Bulletin of the Czech Econometric Society., 19:139-152.
- Stachurski, J. (2009). Economic dynamics. MIT Press, Cambridge, MA. Theory and computation.
Paper Citation
in Harvard Style
Zacarías-Espinoza G., Cruz-Suárez H. and Lemus-Rodríguez E. (2016). A Stochastic Version of the Ramsey’s Growth Model . In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-171-7, pages 323-329. DOI: 10.5220/0005752503230329
in Bibtex Style
@conference{icores16,
author={Gabriel Zacarías-Espinoza and Hugo Cruz-Suárez and Enrique Lemus-Rodríguez},
title={A Stochastic Version of the Ramsey’s Growth Model},
booktitle={Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2016},
pages={323-329},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005752503230329},
isbn={978-989-758-171-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - A Stochastic Version of the Ramsey’s Growth Model
SN - 978-989-758-171-7
AU - Zacarías-Espinoza G.
AU - Cruz-Suárez H.
AU - Lemus-Rodríguez E.
PY - 2016
SP - 323
EP - 329
DO - 10.5220/0005752503230329