Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition
Adel Saleh, Miguel Angel Garcia, Farhan Akram, Mohamed Abdel-Nasser, Domenec Puig
2016
Abstract
This paper presents a video representation that exploits the properties of the trajectories of local descriptors in human action videos. We use spatial-temporal information, which is led by trajectories to extract kinematic properties: tangent vector, normal vector, bi-normal vector and curvature. The results show that the proposed method provides comparable results compared to the state-of-the-art methods. In turn, it outperforms compared methods in terms of time complexity.
References
- Ben Aoun, N., Elghazel, H., and Ben Amar, C. (2011). Graph modeling based video event detection. In 2011 International Conference on Innovations in Information Technology (IIT), pages 114-117. IEEE.
- Bouchrika, T., Zaied, M., Jemai, O., and Amar, C. B. (2014). Neural solutions to interact with computers by hand gesture recognition. Multimedia Tools and Applications, 72(3):2949-2975.
- Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886-893. IEEE.
- Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In Computer Vision-ECCV 2006, pages 428- 441. Springer.
- Hou, R., Zamir, A. R., Sukthankar, R., and Shah, M. (2014). Damn-discriminative and mutually nearest: Exploiting pairwise category proximity for video action recognition. In Computer Vision-ECCV 2014, pages 721-736. Springer.
- Jain, M., Jégou, H., and Bouthemy, P. (2013). Better exploiting motion for better action recognition. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2555-2562. IEEE.
- Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T. (2011). Hmdb: a large video database for human motion recognition. In IEEE International Conference on Computer Vision (ICCV), pages 2556-2563. IEEE.
- Laptev, I., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic human actions from movies. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-8. IEEE.
- Peng, X., Wang, L., Wang, X., and Qiao, Y. (2014). Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. arXiv preprint arXiv:1405.4506.
- Perronnin, F., Sánchez, J., and Mensink, T. (2010). Improving the fisher kernel for large-scale image classification. In Computer Vision-ECCV 2010, pages 143- 156. Springer.
- Raptis, M. and Soatto, S. (2010). Tracklet descriptors for action modeling and video analysis. In Computer Vision-ECCV 2010, pages 577-590. Springer.
- Sánchez, J., Perronnin, F., Mensink, T., and Verbeek, J. (2013). Image classification with the Fisher vector: Theory and practice. International Journal of Computer Vision, 105(3):222-245.
- Sekma, M., Mejdoub, M., and Amar, C. B. (2013). Human action recognition using temporal segmentation and accordion representation. In Computer Analysis of Images and Patterns, pages 563-570. Springer.
- Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems, pages 568-576.
- Wang, H., Kläser, A., Schmid, C., and Liu, C.-L. (2011). Action recognition by dense trajectories. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3169-3176. IEEE.
- Wang, H. and Schmid, C. (2013). Action recognition with improved trajectories. In IEEE International Conference on Computer Vision (ICCV), pages 3551-3558. IEEE.
- Wang, H., Ullah, M. M., Klaser, A., Laptev, I., and Schmid, C. (2009). Evaluation of local spatio-temporal features for action recognition. In British Machine Vision Conference (BMVC), pages 124-1. BMVA Press.
- Wang, L., Qiao, Y., and Tang, X. (2013). Motionlets: Midlevel 3d parts for human motion recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2674-2681. IEEE.
- Wang, W.-C., Chung, P.-C., Cheng, H.-W., and Huang, C.- R. (2015). Trajectory kinematics descriptor for trajectory clustering in surveillance videos. In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1198-1201. IEEE.
- Yang, X. and Tian, Y. (2014). Action recognition using super sparse coding vector with spatio-temporal awareness. In Computer Vision-ECCV 2014, pages 727- 741. Springer.
Paper Citation
in Harvard Style
Saleh A., Garcia M., Akram F., Abdel-Nasser M. and Puig D. (2016). Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 180-185. DOI: 10.5220/0005781001800185
in Bibtex Style
@conference{visapp16,
author={Adel Saleh and Miguel Angel Garcia and Farhan Akram and Mohamed Abdel-Nasser and Domenec Puig},
title={Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={180-185},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005781001800185},
isbn={978-989-758-175-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition
SN - 978-989-758-175-5
AU - Saleh A.
AU - Garcia M.
AU - Akram F.
AU - Abdel-Nasser M.
AU - Puig D.
PY - 2016
SP - 180
EP - 185
DO - 10.5220/0005781001800185