VOPT: Robust Visual Odometry by Simultaneous Feature Matching and Camera Calibration

Rafael F. V. Saracchini, Carlos Catalina, Rodrigo Minetto, Jorge Stolfi

2016

Abstract

In this paper we describe VOPT, a robust algorithm for visual odometry. It tracks features of the environment with known position in space, which can be acquired through monocular or RGBD SLAM mapping algorithms. The main idea of VOPT is to jointly optimize the matching of feature projections on successive frames, the camera’s extrinsic matrix, the photometric correction parameters, and the weight of each feature at the same time, by a multi-scale iterative procedure. VOPT uses GPU acceleration to achieve real-time performance, and includes robust procedures for automatic initialization and recovery, without user intervention. Our tests show that VOPT outperforms the PTAMM algorithm in challenging videos available publicly.

References

  1. Alcantarilla, P. F., Nuevo, J., and Bartoli, A. (2013). Fast explicit diffusion for accelerated features in nonlinear scale spaces. In British Machine Vision Conf. (BMVC).
  2. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision - ECCV 2006, volume 3951 of Lecture Notes in Computer Science, pages 404-417. Springer Berlin / Heidelberg.
  3. Birchfield, S. (2014). Derivation of kanade-lucas-tomasi tracking equation. https://www.ces.clemson.edu/ stb/klt/birchfieldklt-derivation.pdf.
  4. Blender Online Community (2014). Blender - a 3D modelling and rendering package. Amsterdam.
  5. Castle, R., Klein, G., and Murray, D. (2008). Video-Rate Localization in Multiple Maps for Wearable Augmented Reality. In IEEE International Symposium on Wearable Computers (ISWC), pages 15-22.
  6. Concha, A. and Civera, J. (2014). Using Superpixels in Monocular SLAM. In IEEE International Conference on Robotics and Automation (ICRA), pages 365-372.
  7. Engel, J., Sturm, J., and Cremers, D. (2013). Semi-dense visual odometry for a monocular camera. In IEEE International Conference on Computer Vision (ICCV), pages 1449-1456.
  8. Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast Semi-Direct Monocular Visual Odometry. In IEEE International Conference on Robotics and Automation (ICRA), pages 15-22.
  9. Harris, M. et al. (2007). Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology, 2(4).
  10. Klein, G. (2006). Visual Tracking for Augmented Reality. PhD thesis, University of Cambridge.
  11. Klein, G. and Murray, D. (2009). Parallel tracking and mapping on a camera phone. In IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 83-86.
  12. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91- 110.
  13. Maxime, M., Comport, A., and Rives, P. (2011). Real-Time Dense Visual Tracking under Large Lighting Variations. In British Machine Vision Conference (BMVC), pages 45.1-45.11. BMVA Press.
  14. Micikevicius, P. (2009). 3D Finite Difference Computation on GPUs using CUDA. In Workshop on General Purpose Processing on Graphics Processing Units, pages 79-84. ACM.
  15. Minetto, R., Leite, N., and Stolfi, J. (2009). AFFTrack: Robust Tracking of Features in Variable-Zoom Videos. In IEEE International Conference on Image Processing (ICIP), pages 4285-4288.
  16. NACODEAL (2014). NACODEAL - Natural Communication Device for Assisted Living. European Union Project. www.nacodeal.eu. Ambient Assisted Living Joint Programme ref. AAL-2010-3-116.
  17. Newcombe, R., Izadi, S., Hillige, O., Molyneaux, D., Kim, D., Davison, A., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011a). KinectFusion: Real-time Dense Surface Mapping and Tracking. In IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 127-136.
  18. Newcombe, R., Lovegrove, S., and Davison, A. (2011b). DTAM: Dense Tracking and Mapping in Real-Time. In IEEE International Conference on Computer Vision (ICCV), pages 2320-2327.
  19. Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 2161-2168.
  20. Ruijters, D., Romeny, B., and Suetens, P. (2008). Efficient GPU-Based Texture Interpolation using Uniform BSplines. Journal of Graphics, GPU, and Game Tools, 13(4):6169.
  21. Saracchini, R. and Ortega, C. (2014). An Easy to Use Mobile Augmented Reality Platform for Assisted Living using Pico-projectors. In Computer Vision and Graphics, volume 8671 of Lecture Notes in Computer Science, pages 552-561. Springer.
  22. Scaramuzza, D. and Fraundorfer, F. (2011). Visual odometry [tutorial]. Robotics & Automation Magazine, IEEE, 18(4):80-92.
  23. Shi, J. and Tomasi, C. (1994). Good Features to Track. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 593-600.
  24. Straub, J., Hilsenbeck, S., Schroth, G., Huitl, R., Moller, A., and Steinbach, E. (2013). Fast Relocalization for Visual Odometry using Binary Features. In IEEE International Conference on Image Processing (ICIP), pages 2548-2552.
  25. Vacchetti, L., Lepetit, V., and Fua, P. (2004). Stable RealTime 3D Tracking Using Online and Offline Information. IEEE Trans. Pattern Anal. Mach. Intell., 26(10):1385-1391.
  26. Weiss, S., Achtelik, M., Lynen, S., Achtelik, M., Kneip, L., Chli, M., and Siegwart, R. (2013). Monocular Vision for Long-term Micro Aerial Vehicle State Estimation: A Compendium. Journal of Field Robotics, 30(5):803-831.
  27. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald, J. (2012). Kintinuous: Spatially Extended KinectFusion. Technical Report MIT-CSAIL-TR-2012-020, MIT.
Download


Paper Citation


in Harvard Style

Saracchini R., Catalina C., Minetto R. and Stolfi J. (2016). VOPT: Robust Visual Odometry by Simultaneous Feature Matching and Camera Calibration . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 59-66. DOI: 10.5220/0005781700590066


in Bibtex Style

@conference{visapp16,
author={Rafael F. V. Saracchini and Carlos Catalina and Rodrigo Minetto and Jorge Stolfi},
title={VOPT: Robust Visual Odometry by Simultaneous Feature Matching and Camera Calibration},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={59-66},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005781700590066},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - VOPT: Robust Visual Odometry by Simultaneous Feature Matching and Camera Calibration
SN - 978-989-758-175-5
AU - Saracchini R.
AU - Catalina C.
AU - Minetto R.
AU - Stolfi J.
PY - 2016
SP - 59
EP - 66
DO - 10.5220/0005781700590066