3D Thermal Monitoring and Measurement using Smart-phone and IR Thermal Sensor
Arindam Saha, Keshaw Dewangan, Ranjan Dasgupta
2016
Abstract
Continuous and on the fly heat monitoring in industries like manufacturing and chemical is of compelling research nowadays. The recent advancement in IR thermal sensors unfold the possibilities to fuse the thermal information with other low cost sensor (like optical camera) to perform area or volumetric heat measurement of any heated object. Recent development of affordable handheld mobile thermal sensor as a smart-phone attachment by FLIR encouraged the researcher to develop thermal monitoring system as smart-phone application. In pursuit of this goal we present a light weight system with a combination of optical and thermal sensors to create a thermal dense 3D model along with area/volume measurement of the heated zones using smart-phone. Our proposed pipeline captures RGB and thermal images simultaneously using FLIR thermal attachment. Estimates the poses for RGB and depth images, 3D models are generated by tracking the features from RGB images. Back-projection is used to colour the 3D points to represent both in RGB as well as an estimated surface temperature. The final output of the system is the detected hot region with area/volumetric measurement. Experimental results demonstrate that the cost effective system is capable to measure hot areas accurately and usable in everyday life.
References
- P. Deshpande, V. R. Reddy, A. Saha, K. Vaiapury, K. Dewangan, R. Dasgupta, (2015). A Next Generation Mobile Robot with Multi-mode Sense of 3D Perception. IEEE International Conference on Advanced Robotics (ICAR), pp. 382 - 387 DOI:10.1109/ICAR.2015.7251484
- D. Borrmann, A. Nuchter, M. Dakulovic, I. Maurovic, I. Petrovic, D. Osmankovic, and J. Velagic, (2012). The project ThermalMapper thermal 3D mapping of indoor environments for saving energy. In Proc. of the 10th International IFAC Symposium on Robot Control (SYROCO), vol. 10.
- S. Vidas, P. Moghadam and M. Bosse, (2013). 3D thermal mapping of building interiors using an RGB-D and thermal camera. In Proc. of IEEE International Conference on Robotics and Automation.
- M. Meilland and A. Comport, (2013). Super-resolution 3D Tracking and Mapping. In IEEE Intl. Conf. on Robotics and Automation.
- T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and M. J.B., (2013). Robust real-time visual odometry for dense RGB-D mapping. In IEEE Intl. Conf. on Robotics and Automation (ICRA).
- R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, (2011). KinectFusion: Realtime dense surface mapping and tracking. In Proc. ISMAR.
- A. B. Krishnan and J. Kollipara, (2014). Intelligent indoor mobile robot navigation using stereo vision. Signal & Image Processing: An International Journal (SIPIJ), Vol.5, No.4.
- A. Saha, B. Bhowmick and A. Sinha, (2014). A system for near real-time 3D reconstruction from multi-view using 4G enabled mobile. IEEE International Conference on Mobile Services (MS), pp. 1-7, doi:10.1109/MobServ.2014.10.
- S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.
- Y. Furukawa and J. Ponce, (2010). Accurate, dense, and robust multiview stereopsis. In Proc. IEEE Trans. Pattern Anal. Machine Intell., vol. 32, no. 8, pp. 1362- 1376.
- V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer and S. Bathiche, (2013). MonoFusion: Real-time 3D reconstruction of small scenes with a single web camera. The 13th IEEE International Symposium on Mixed and Augmented Reality.
- M. Pizzoli, C. Forster and D. Scaramuzza, (2003). REMODE: Probabilistic, monocular dense reconstruction in real time. In Proc. IEEE International Conference on Robotics and Automation (ICRA).
- R. Hartley and A. Zisserman, (2003). Multiple view geometry in computer vision. ISBN 0-521-54051-8, Cambridge University Press.
- Z. Zhang., (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334.
- B. Bhowmick, A. Mallik and A. Saha, (2014). Mobiscan3D: A low cost framework for real time dense 3d reconstruction on mobile devices. Iin Proc. of The 11th IEEE International Conference on Ubiquitous Intelligence and Computing.
- H. Hirschmuller and D. Scharstein, (2009). Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Machine Intell., vol. 31, no. 9.
- T. Brox and J. Malik, (2011). Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3):500-513.
- N. Sundaram, T. Brox and K. Keutzer, (2010). Dense point trajectories by GPU-accelerated large displacement optical flow. European Conference on Computer Vision (ECCV), Crete, Greece, Springer, LNCS.
- K. Dewangan, A. Saha, K. Vaiapury, R. Dasgupta, (2015). 3D Environment Reconstruction using Mobile Robot Platform & Monocular Vision. 9th International Conference on Advanced Computing & Communication Technologies (ICACCT).
Paper Citation
in Harvard Style
Saha A., Dewangan K. and Dasgupta R. (2016). 3D Thermal Monitoring and Measurement using Smart-phone and IR Thermal Sensor . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 694-700. DOI: 10.5220/0005786106940700
in Bibtex Style
@conference{visapp16,
author={Arindam Saha and Keshaw Dewangan and Ranjan Dasgupta},
title={3D Thermal Monitoring and Measurement using Smart-phone and IR Thermal Sensor},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={694-700},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005786106940700},
isbn={978-989-758-175-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - 3D Thermal Monitoring and Measurement using Smart-phone and IR Thermal Sensor
SN - 978-989-758-175-5
AU - Saha A.
AU - Dewangan K.
AU - Dasgupta R.
PY - 2016
SP - 694
EP - 700
DO - 10.5220/0005786106940700