Earth Rotation: An Example to Teach Rigid Body Motion and Environmental Monitoring - A Fallout of the Exploitation of LARES Satellite Data

Antonio Paolozzi, Erricos Pavlis, Claudio Paris, Giampiero Sindoni, Ignazio Ciufolini

2016

Abstract

The use of satellite laser ranging in combination with other space geodetic techniques allows us to determine Earth’s motion with unprecedented accuracy, which is not as simple as usually described in basic textbooks. Besides rotation and revolution there is a wobble of the rotation axis that can be derived by the torque free case in rigid body dynamics. The presence of gravitational perturbations complicates the motion and considering Earth as non-rigid introduces even more variations in the basic Earth motion theory. What is interesting is that also the mass redistribution of air and water on the planet can affect the motion of Earth’s rotational axis. Thanks to the millimetre accuracy achievable today, it is possible to correlate very small anomalous rotational axis displacements with global environmental changes such the change in ice melting. The paper will show the experimental motion of the Earth rotation axis and interpret it with the use of the Euler rigid body equations of motion, outlining also the effects of the gravitational perturbations of other bodies in the solar system and of the global climate changes on the Earth rotational axis.

References

  1. Berger A. L., 1976. Obliquity and Precession for the Last 5.000.000 Years. Astron. & Astrophys., 51, 127-135.
  2. Bosi F., et al., 2011. Measuring gravito-magnetic effects by multi ring-laser gyroscope. Phys. Rev. D. vol. 84, p. 122002-1-23.
  3. Bosco, A., Cantone, C., Dell'Agnello, S., Delle Monache, G. O., Franceschi, M. A., Garattini, M., et al., 2007. Probing gravity in NEO with high-accuracy laserranged test masses. International Journal of Modern Physics D, vol. 16, p. 2271-2285.
  4. Cazenave, A., and Chen J. L., 2010, Time-variable gravity from space and present-day mass redistribution in the Earth system, Earth and Planetary Science Letters, 298, 263-274.
  5. Chen, J. L., Wilson, C. R., Ries, J. C., Tapley, B. D., 2013. Rapid ice melting drives Earth's pole to the east, Geophysics Research Letters, 40, 2625-2630.
  6. Ciufolini, I. and Pavlis E. C., 2004. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958-960.
  7. Ciufolini, I., Pavlis, E. C., Paolozzi, A., Ries, J., Koenig, R., Matzner, R., Sindoni, G., Neumayer H., 2012a. Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites. New Astronomy, 17(3), 341-346.
  8. Ciufolini, I., Paolozzi, A., Paris, C., 2012b. Overview of the LARES Mission: orbit, error analysis and technological aspects. Journal of Physics, Conference Series, vol. 354, p. 1-9.
  9. Ciufolini, I., Moreno Monge, B., Paolozzi, A., Koenig, R., Sindoni, G., Michalak G., Pavlis, E. C., 2013a. Monte Carlo simulations of the LARES space experiment to test General Relativity and fundamental physics. Classical and Quantum Gravity, 30, 235009.
  10. Ciufolini, I., Paolozzi, A., Koenig, R., Pavlis, E. C., Ries, J., Matzner, R., Gurzadyan, V., Penrose, R., Sindoni, G., Paris, C., 2013b. Fundamental Physics and General Relativity with the LARES and LAGEOS satellites. Nuclear Physics B-Proceedings Supplements, vol. 243- 244, p. 180-193.
  11. Ciufolini, I., Paolozzi, A., Paris, C., Sindoni, G., 2014. The LARES satellite and its minimization of the thermal forces. In: IEEE International Workshop on Metrology for Aerospace. Conference Proceedings, pp. 299-303. IEEE.
  12. Ciufolini, I., Paolozzi, A., Pavlis, E. C., Koenig, R., Ries, J., Gurzadyan, V., Matzner, R., Penrose, R., Sindoni, G., Paris, C., 2015. Preliminary orbital analysis of the LARES space experiment. The European Physical Journal Plus, vol. 130.
  13. Creveling, J. R., J. X. Mitrovica, N.-H. Chan, K. Latychev, and I. Matsuyama (2012), Mechanisms for oscillatory true polar wander, Nature, 491, 244-248.
  14. Di Virgilio, A., Allegrini, A., Beghi, M., Belfi, A., et al., 2014. A ring lasers array for fundamental physics. Comptes Rendus Physique, vol. 15, p. 866-874.
  15. Jenkins, A., 2015. On the maintenance of the Chandler wobble. arXiv:1506.02810v1 [physics.geo-ph], 9 Jun, 2015.
  16. Paolozzi, A., Ciufolini, I., Felli, F., Brotzu, A., Pilone, D., 2009. Issues on lares satellite material. In: Proceedings of International Astronautical Congress IAC 2009, Daejeon, Republic of Korea.
  17. Paolozzi, A., Ciufolini, I., Flamini, E., Gabrielli, A., Pirrotta, S., Mangraviti, E., Bursi, A., 2012. LARES in orbit: some aspects of the mission. Proceedings of Inter, Astronautical Congress IAC 2012, Naples, Italy.
  18. Paolozzi, A., Ciufolini, I., 2013. LARES successfully launched in orbit: satellite and mission description. Acta Astronautica, vol. 91, pp. 313-321.
  19. Paolozzi, A., Ciufolini, I., Paris, C., Sindoni, G., 2015. LARES a new satellite specifically designed for testing general relativity. International Journal of Aerospace Engineering, vol. 2015, p. 1-10.
  20. Pavlis, E. C., Ciufolini, I., Paolozzi, A., Paris, C., Sindoni, G., 2015a. Quality assessment of LARES satellite ranging data. LARES contribution for improving the terrestrial reference frame. In: 2nd IEEE International Workshop on Metrology for Aerospace. Conference Proceedings. vol. 1, p. 33-37. IEEE.
  21. Pavlis, E. C., Sindoni, G., Paolozzi, A., Ciufolini, I., 2015b. Contribution of LARES and Geodetic Satellites on Environmental Monitoring. Proc. of 15th IEEE International Conference on Environment and Electrical Engineering - IEEE EEEIC 2015. IEEE.
  22. Pearlman, M. R., Degnan, J. J. and Bosworth, J. M., 2002. The International Laser Ranging Service. Advances in Space Research, 30, pp. 135-143.
  23. Roy, K., and Peltier W. R., 2011. GRACE era secular trends in Earth rotation parameters: A global scale impact of the global warming process?. Geophysics Research Letters, 38, L10306, pp.1-5.
  24. Sindoni, G., Paris, C., Vendittozzi, C., Pavlis, E. C., Ciufolini, I., Paolozzi A., 2015. The contribution of LARES to global climate change studies with geodetic satellites. Proc. of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS 2015. ASME.
Download


Paper Citation


in Harvard Style

Paolozzi A., Pavlis E., Paris C., Sindoni G. and Ciufolini I. (2016). Earth Rotation: An Example to Teach Rigid Body Motion and Environmental Monitoring - A Fallout of the Exploitation of LARES Satellite Data . In Proceedings of the 8th International Conference on Computer Supported Education - Volume 2: CSEDU, ISBN 978-989-758-179-3, pages 339-346. DOI: 10.5220/0005807103390346


in Bibtex Style

@conference{csedu16,
author={Antonio Paolozzi and Erricos Pavlis and Claudio Paris and Giampiero Sindoni and Ignazio Ciufolini},
title={Earth Rotation: An Example to Teach Rigid Body Motion and Environmental Monitoring - A Fallout of the Exploitation of LARES Satellite Data},
booktitle={Proceedings of the 8th International Conference on Computer Supported Education - Volume 2: CSEDU,},
year={2016},
pages={339-346},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005807103390346},
isbn={978-989-758-179-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Computer Supported Education - Volume 2: CSEDU,
TI - Earth Rotation: An Example to Teach Rigid Body Motion and Environmental Monitoring - A Fallout of the Exploitation of LARES Satellite Data
SN - 978-989-758-179-3
AU - Paolozzi A.
AU - Pavlis E.
AU - Paris C.
AU - Sindoni G.
AU - Ciufolini I.
PY - 2016
SP - 339
EP - 346
DO - 10.5220/0005807103390346