Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems
Derkaoui Orkia, Lehireche Ahmed
2016
Abstract
This paper provides a new variant of primal-dual interior-point method for solving a SemiDefinite Program (SDP). We use the PDIPA (primal-dual interior-point algorithm) solver entitled SDPA (SemiDefinite Programming Algorithm). This last uses a classical Newton descent method to compute the predictor-corrector search direction. The difficulty is in the computation of this line-search, it induces high computational costs. Here, instead we adopt a new procedure to implement another way to determine the step-size along the direction which is more efficient than classical line searches. This procedure consists in the computation of the step size in order to give a significant decrease along the descent line direction with a minimum cost. With this procedure we obtain à new variant of SDPA. The comparison of the results obtained with the classic SDPA and our new variant is promising.
References
- Alizadeh, F., 1995. Interior point methods in semidefinite programming with application to combinatorial optimization, SIAM journal on Optimization, 5:13-51.
- Alizadeh, F., Haberly, J.-P., and Overton, M.-L.. 1998. Primal-dual interior-point methods for semidefinite programming, convergence rates, stability and numerical. SIAM J. Optim.8 746-768.
- Benterki, D., Crouzeix, J.-P., and Merikhi., B., 2003. A numerical implementation of an interior point method for semi-definite programming. Pesquisa Operacional 23-1, 49-59.
- Fujisawa, K. and Kojima, M., 1995. SDPA(Semidefinite Programming Algorithm) Users Manual. Technical Report b-308, Tokyo Institute of Technology.
- Jarre. F., 1993. An interior-point method for Programming minimizing the maximum eigenvalue of a linear combination of matrices. SIAM Journal on Control and Optimization, 31:1360-1377.
- Nesterov Y. E., and Nemirovskii. A. S., 1990. Optimization over positive semidefinite matrices: Mathematical background and user's manual. Technical report, Central Economic & Mathematical Institute, USSR Acad. Sci. Moscow, USSR.
- Nesterov Y. E., and Nemirovskii. A. S., 1993. Interior Point Polynomial Methods in Convex Programming : Theory and Algorithms. SIAM Publications, Philadelphia.
- Vandenberghe, L. and Boyd. S., 1995. Primal-dual potential reduction method for problems involving matrix inequalities. Mathematical Programming, 69:205-236.
- Nesterov, Y.E., and Nemirovskii, A.S., 1994. InteriorPoint Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics 13. SIAM, Philadelphia, PA, USA. 185, 461, 564, 584, 602.
- Nesterov, Y. E., and Todd, M. J., 1995. Primal-dual interior-point methods for self-scaled cones. Technical Report 1125, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York, 14853-3801.
- Crouzeix, J.P. Merikhi, B., 2008, A logarithm barrier method for semidefinite programming, R.A.I.R.OOper. Res. 42, pp. 123-139.
- Benterki, D., Merikhi, B., 2001. A modified algorithm for the strict feasibility problem, RAIRO Oper. Res. 35, pp. 395-399.
- Monteiro, R.D.C., 1997. Primal-dual path- following algorithms for semidefinite programming. SIAM Journal on Optimization, 7, pp. 663-678.
- Derkaoui, O., Lehireche, A, 2014. Safe bounds in Semidefinite programming by using interval arithmetic. American Journal of Operations Research, Vol. 4 No. 5, septembre, PP. 293-300. DOI: 10.4236/ajor.2014.45029.
- Helmberg, C., Rendl, F., Vanderbei, R.J., and Wolkowicz, H., 1996. An interior point method for semidefinite programming. SIAM Journal on Optimization, 6:342-361.
- Monteiro, R. D. C., and Tsuchiya, T., 1996. Polynomial convergence of a new family of primal-dual algorithms for semidefinite programming.Technical report, Georgia Institute of Technology,Atlanta, Georgia, USA.
- Mehrotra, S., 1992. On the implementation of a primaldual interior point method, SIAM Journal on Optimization 2 575-601.
- Monteiro, R. D. C., 1997. Primal-dual path following algorithms for semidefinite programming, SIAM Journal on Optimization 7 663-678.
- Nakata, M., Nakatsuji, H., Ehara, M., Fukuda, M., Nakata, K. and Fujisawa, K., 2001. Variational calculations of fermion second-order deduced density matrices by semidefinite programming algorithm, Journal of Chemical Physics 114 8282-8292.
- Nakata, M., Ehara, M., and Nakatsuji, H., 2002. Density matrix variational theory: Application to the potential energy surfaces and strongly correlated systems, Journal of Chemical Physics 116 5432-5439.
- Ben-Tal, A., and Nemirovskii, A., 2001. Lectures on Moden Convex Optimizatin Analysis, Algorithms, and Engineering Applications, (SIAM, Philadelphia).
- Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory, Society for Industrial and Applied Mathematics Philadelphia, PA, ISBN 0-89871-334-X.
- Goemans, M. X., and Williamson, D. P., 1995. Improved approximation alogrithoms for maxmum cut and satisfiability problems using semidefinite programming, Journal of Association for Computing Machinery 42(6) 1115-1145.
- Todd, M. J., 2001. Semidefinite optimization, Acta Numerica 10 515-560.
- Vandenberghe, L., Boyd, S., 1994. Positive-Definite Programming, Mathematical Programming: State of the Art J. R. Birge and K. G. Murty ed.s, U. of Michigan.
- Wolkowicz, H., Saigal, R., and Vandenberghe, L., 2000. Handbook of Semidefinite Programming, Theory, Algorithms, and Applications, (Kluwer Academic Publishers, Massachusetts.
- Kojima, M., Mizuno, S. and Yoshise, A., 1989. A PrimalDual Interior Point Algorithm for Linear Programming, in: N. Megiddo, ed., Progress in Mathematical Programming: Interior Point and Related Methods (Springer-Verlag, New York) 29-47.
- Tanabe, K., 1988. Centered Newton Method for Mathematical Programming, in: M. Iri and K. Yajima, eds., System Modeling and Optimization (Springer, New York) 197-206.
- Borchers. B., 1999. CSDP, a C library for semidefinite programming. Optimization Methods and Software, 11.
- Benson, S. J., Ye, Y., and Zhang, X., 2000. Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM Journal on Optimization, 10(2):443-461.
- Sturm, J. F., 1998. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
- Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., and Goto, K.., 2010. A high-performance software package for semidefinite programs: SDPA 7. Technical report, Dept. of Mathematical and Computing Science, Tokyo Institute of Technology.
- Burer, S., and Monteiro, R. D. C., 2003. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program., 95(2):329-357.
- Helmberg, C., and Rendl. F., 2000. A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10:673-696.
- Borchers, B., 1999. SDPLIB 1.2, a library of semidefinte programming test problems, Optimization Methods and Software 11 & 12 683-690.
- Chouzenoux, E., Moussaoui, S., Idier, J., 2009. A Majorize-Minimize line search algorithm for barrier function optimization. EURASIP European Signal and Image Processing Conference, Aug, Glasgow, United Kingdom. pp.1379-1383, 2009. <hal-00456013>.
Paper Citation
in Harvard Style
Orkia D. and Ahmed L. (2016). Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems . In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-171-7, pages 204-209. DOI: 10.5220/0005813802040209
in Bibtex Style
@conference{icores16,
author={Derkaoui Orkia and Lehireche Ahmed},
title={Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems},
booktitle={Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2016},
pages={204-209},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005813802040209},
isbn={978-989-758-171-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems
SN - 978-989-758-171-7
AU - Orkia D.
AU - Ahmed L.
PY - 2016
SP - 204
EP - 209
DO - 10.5220/0005813802040209