A Support Vector Machine based Prediction Model for Discrimination of Malignant Pulmonary Nodules from Benign Nodules

Yan Wu, Emmanuel Zachariah, Judith Amorosa, Anjani Naidu, Mina L. Labib, Jamil Shaikh, Donna Eckstein, Sinae Kim, John E. Langenfeld, Joseph Aisner, John L. Nosher, Robert S. DiPaola, David J. Foran

2016

Abstract

Lung cancer is the leading cause of cancer death in the United States and worldwide. Most patients are diagnosed at an advanced stage, usually stage III or IV. Identification of lung cancer patients at an early stage might enable oncologists to surgically remove the tumors. Currently, low dose CT scans are used to identify the malignant nodules in high risk patients. However, screening CT scans yield a high rate of false-positive results. A prediction model was developed for improved discrimination of malignant nodules from benign nodules in patients who underwent lung screening CT. CT images and clinical outcomes of 39 patients were obtained from the National Lung Screening Trial (NLST), National Cancer Institute, National Institute of Health. Images were analyzed to extract computational features relevant to malignancy prediction. A Support Vector Machine (SVM) based model was developed to predict the malignancy of nodules. During pilot studies, our model achieved the following prediction performance: accuracy of 0.74, sensitivity of 0.85, and specificity of 0.61.

References

  1. American Cancer Society. (2015) Cancer Facts and Figures. http://www.cancer.org/research/cancerfacts statistics/cancerfactsfigures2015/ Accessed on 10/10/2015.
  2. Arenberg, D., and Kazerooni, E.A., (2012). Setting up a lung cancer screening program. Journal of the National Comprehensive Cancer Network, 10(2):277- 285.
  3. Bach, P.B., Kattan, M.W., Thornquist, M.D., Kris, M.G., Tate, R.C., Barnett, M.J., Hsieh, L.J., and Begg, C.B. (2003).Variations in lung cancer risk among smokers. Journal of the National Cancer Institute, 95(6): 470- 478.
  4. Cassidy, A., Myles, J.P., Van-Tongeren, M., Page, R.D., Liloglou, T., Duffy, S.W. and Field, J.K. (2008). The LLP risk model: an individual risk prediction model for lung cancer. British Journal of Cancer, 98(2):270- 276.
  5. Cortes, C., and Vapnik, V., (1995). Support-vector networks. Machine Learning, 20:273-297.
  6. Eisenhauer, E.A., Therasse, P., Bogaerts, J., et al. (2009). New response evaluation criteria in solid tumors: Revised RECIST guideline (version 1.1). European Journal of Cancer, 45:228-247.
  7. Entezari-Maleki, R., Rezaei, A., a nd Minaei-Bidgoli, B., (2009). Comparison of Classification Methods Based on the Type of Attributes and Sample Size. Journal of Convergence Information Technology, 4(3):94-102.
  8. Gevaert, O., Xu, J., Hoang, C.D., Leung, A.N., Xu, Y., Quon, A., Rubin, D.L., Napel, S., and Plevritis, S.K. (2012). Non-Small Cell Lung Cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-Methods and preliminary results. Radiology, 264(2):387-396.
  9. Maldonado, F., Boland, J.M., Raghunath, S., et al. (2013). Non-invasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer Aided Nodule Assessment and Risk Yield (CANARY) - a Pilot Study. Journal of Thoracic Oncology, 8(4): 452- 460.
  10. National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365(5):395-409.
  11. Ojala, T., Pietikainen, M., and Harwood, D., (1996). A comparative study of texture measures with classification based on featured distributions. Pattern recognition, 29(1):51-59.
  12. Rutman, A.M., and Kuo, M.D., (2009). Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. European Journal of Radiology, 70(2):232-241.
  13. Salazar, D.A., Velez, J.I., and Salazar, J.C., (2012). Comparison between SVM and Logistic Regression: Which One is better to Discriminate? Revista Colombiana de Estadística Número especial en Bioestadística, 35:223-237.
  14. Showe, M.K., Vachani, A., Kossenkov, A.V., et al. (2009). Gene Expression Profiles in Peripheral Blood Mononuclear Cells Can Distinguish Patients with Non-Small-Cell Lung Cancer from Patients with NonMalignant Lung Disease. Cancer Research, 69(24):9202-9210.
  15. Sluimer, I., Schilham, A., Prokop, M., and Van-Ginneken, B. (2006). Computer Analysis of Computed Tomography Scans of the Lung: A Survey. IEEE Transactions on Medical Imaging, 25(4):385-405.
  16. Sozzi, G., and Boeri, M., (2014). Potential biomarkers for lung cancer screening. Transl. Lung Cancer Research, 3(3):139-148.
  17. Spitz, M.R., Hong, W.K., Amos, C.I., Wu, X., Schabath, M.B., Dong, Q., Shete, S. and Etzel, C.J. (2007). A risk model for prediction of lung cancer. Journal of the National Cancer Institute, 99(2):715-726.
  18. Tammemagi, M.C., Katki, H.A., Hocking, W,G., et al. (2013). Selection criteria for lungcancer screening. New England Journal of Medicine, 368(8):728-736.
  19. Tammemagi, M.C., (2015). Application of Risk Prediction Models to Lung Cancer Screening: a review. Journal of Thoracic Imaging, 30(2):88-100.
  20. Wang, H., and Huang, G., (2011). Application of support vector machine in cancer diagnosis. Medical Oncology, 28(1):613-618.
  21. Wood, D.E., Eapen, G.A., Ettinger, D.S., et al. (2012). Lung cancer screening. Journal of the National Comprehensive Cancer Network, 10(2):240-265.
  22. (2011). Blood-Based Gene Expression Signatures in Non-Small Cell Lung Cancer. Clinical Cancer Research, 17(10):3360-3367.
Download


Paper Citation


in Harvard Style

Wu Y., Zachariah E., Amorosa J., Naidu A., Labib M., Shaikh J., Eckstein D., Kim S., Langenfeld J., Aisner J., Nosher J., DiPaola R. and Foran D. (2016). A Support Vector Machine based Prediction Model for Discrimination of Malignant Pulmonary Nodules from Benign Nodules . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 129-133. DOI: 10.5220/0005824101290133


in Bibtex Style

@conference{bioimaging16,
author={Yan Wu and Emmanuel Zachariah and Judith Amorosa and Anjani Naidu and Mina L. Labib and Jamil Shaikh and Donna Eckstein and Sinae Kim and John E. Langenfeld and Joseph Aisner and John L. Nosher and Robert S. DiPaola and David J. Foran},
title={A Support Vector Machine based Prediction Model for Discrimination of Malignant Pulmonary Nodules from Benign Nodules},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016)},
year={2016},
pages={129-133},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005824101290133},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016)
TI - A Support Vector Machine based Prediction Model for Discrimination of Malignant Pulmonary Nodules from Benign Nodules
SN - 978-989-758-170-0
AU - Wu Y.
AU - Zachariah E.
AU - Amorosa J.
AU - Naidu A.
AU - Labib M.
AU - Shaikh J.
AU - Eckstein D.
AU - Kim S.
AU - Langenfeld J.
AU - Aisner J.
AU - Nosher J.
AU - DiPaola R.
AU - Foran D.
PY - 2016
SP - 129
EP - 133
DO - 10.5220/0005824101290133