Land Cover Clustering based on Improved Dictionary Learning Method from Modis Data
Mariem Zaouali, Sonia Bouzidi, Ezzeddine Zagrouba
2016
Abstract
An approach based on k-means clustering algorithm combined with the concept of sparse representation is proposed in this paper. We intend to discriminate, each vegetation type, by its temporal behavior. Our method is composed of two main parts : The first part consists of designing the dictionary that we are going to use. For this reason, we propose a modification of the k-svd algorithm by switching the use of OMP algorithm by the SunSAL algorithm. Then we carry on an unsupervised clustering process using k-means algorithm on sparse vectors. As a result, we found that SunSAL algorithm outperforms the OMP algorithm and we succeed to elaborate discriminative temporal behaviors of the vegetation in our region of study. As perspectives, our approach could be considered as an attempt to overcome the shortage of high spatial resolution data since we are relying only on coarse remote sensing images like MODIS to monitor Land Cover dynamics.
References
- Aharon, M., Elad, M., and Bruckstein, A. (2006). K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transactions on, 54(11):4311-4322.
- Bioucas-Dias, J. M. and Figueiredo, M. A. (2010). Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing. In Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, pages 1-4. IEEE.
- Brown, J. C., Kastens, J. H., Coutinho, A. C., de Castro Victoria, D., and Bishop, C. R. (2013). Classifying multiyear agricultural land use data from mato grosso using time-series modis vegetation index data. Remote Sensing of Environment, 130:39-50.
- Chen, S. and Donoho, D. (1994). Basis pursuit. In Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1, pages 41-44. IEEE.
- Guha, T. and Ward, R. K. (2012). Learning sparse representations for human action recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(8):1576-1588.
- Jia, K., Wu, B., and Li, Q. (2013). Crop classification using hj satellite multispectral data in the north china plain. Journal of Applied Remote Sensing, 7(1):073576- 073576.
- Jonathan, M., Meirelles, M. S. P., Berroir, J.-P., Herlin, I., and da Costa Coutinho, H. L. (2005). Regional scale land use/land cover classification using temporal series of modis data at the high taquari basin, ms, brazil. Simpósio Brasileiro de Sensoriamento Remoto, 12:579-581.
- Lim, Y., Shinn-Cunningham, B., and Gardner, T. J. (2012). Sparse contour representations of sound. Signal Processing Letters, IEEE, 19(10):684-687.
- Mahmoudi, M. and Sapiro, G. (2012). Sparse representations for range data restoration. IEEE transactions on image processing: a publication of the IEEE Signal Processing Society, 21(5):2909-2915.
- Mohammady, M., Moradi, H., Zeinivand, H., and Temme, A. (2015). A comparison of supervised, unsupervised and synthetic land use classification methods in the north of iran. International Journal of Environmental Science and Technology, 12(5):1515-1526.
- Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Del Bon Espírito-Santo, F., Hansen, M., and Carroll, M. (2005). Rapid assessment of annual deforestation in the brazilian amazon using modis data. Earth Interactions, 9(8):1-22.
- Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53-65.
- Tropp, J., Gilbert, A. C., et al. (2007). Signal recovery from random measurements via orthogonal matching pursuit. Information Theory, IEEE Transactions on, 53(12):4655-4666.
- Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2):210-227.
- Xue, Z., Li, J., Cheng, L., and Du, P. (2015). Spectralspatial classification of hyperspectral data via morphological component analysis-based image separation. Geoscience and Remote Sensing, IEEE Transactions on, 53(1):70-84.
- Yang, X., Yang, T., Ji, Q., He, Y., and Ghebrezgabher, M. G. (2014). Regional-scale grassland classification using moderate-resolution imaging spectrometer datasets based on multistep unsupervised classification and indices suitability analysis. Journal of Applied Remote Sensing, 8(1):083548-083548.
- Zhan, X., Sohlberg, R., Townshend, J., DiMiceli, C., Carroll, M., Eastman, J., Hansen, M., and DeFries, R. (2002). Detection of land cover changes using modis 250 m data. Remote Sensing of Environment, 83(1):336-350.
Paper Citation
in Harvard Style
Zaouali M., Bouzidi S. and Zagrouba E. (2016). Land Cover Clustering based on Improved Dictionary Learning Method from Modis Data . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: RGB-SpectralImaging, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 697-704. DOI: 10.5220/0005851006970704
in Bibtex Style
@conference{rgb-spectralimaging16,
author={Mariem Zaouali and Sonia Bouzidi and Ezzeddine Zagrouba},
title={Land Cover Clustering based on Improved Dictionary Learning Method from Modis Data},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: RGB-SpectralImaging, (VISIGRAPP 2016)},
year={2016},
pages={697-704},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005851006970704},
isbn={978-989-758-175-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: RGB-SpectralImaging, (VISIGRAPP 2016)
TI - Land Cover Clustering based on Improved Dictionary Learning Method from Modis Data
SN - 978-989-758-175-5
AU - Zaouali M.
AU - Bouzidi S.
AU - Zagrouba E.
PY - 2016
SP - 697
EP - 704
DO - 10.5220/0005851006970704