Hierarchical Complexity and Aging - Towards a Physics of Aging

Tarynn M. Witten

2016

Abstract

In this paper we extend the previous work of Witten and her team on defining a classical physics driven model of survival in aging populations (Eakin, 1994; Eakin and Witten, 1995a; Eakin and Witten, 1995b; Witten and Eakin, 1997) by revisiting the concept of a force of aging and introducing the concepts of a momentum of aging, a kinetic energy and a potential energy of an aging. As an example of the use of these constructs, we then explore the implications of these concepts with respect to the (Yu et al., 1982) diet restriction experiments.

References

  1. Abdel-Hameed, M., Cinlar, E., and Quinn, J. (1984). Reliability Theory and Models: Stochastic Failure Models, Optimal Maintenance Policies, Life Testing and Structures. Academic Press, Inc., Orlando, FL.
  2. Ansell, J. and Phillips, M. (1994). Practical Methods for Reliability Data Analysis. Clarendon Press, Oxford, England.
  3. Carnes, B. and Olshansky, S. (1997). A biologically motivated partitioning of mortality. Experimental Gerontology, 32(6):615-631.
  4. Carnes, B. and Witten, T. (2013). How long must humans live. J. Gerontology Biol. Sci. Med. Sci., 69A(8):965 - 970.
  5. Carnes, B. A., Grahn, D., and Hoel, D. (2003). Mortality of atomic bomb survivors predicted from laboratory animals. Radiat. Res., 160(2):159 - 167.
  6. Carnes, B. A., Holden, L. R., Olshansky, S. J., Witten, M. T., and Siegel, J. S. (2006). Mortality partitions and their relevance to research on senescence. Biogerontology, 7(4):183 - 198.
  7. Carnes, B. A., Olshansky, S. J., and Grahn, D. (1998). An interspecies prediction of the risk of radiation-induced mortality. Radiat. Res., 149(5):487 - 492.
  8. Cheney, W. and Kincaid, D. (1985). Numerical Mathematics and Computing. Brooks Cole, Monterey, CA.
  9. Chiang, C. (1984). The Life Table and its Applications. Robert E. Krieger Publishing, Co., Malabar, FL.
  10. Demetrius, L. (1977). Measures of fitness and demographic stability. Proc. Natl. Acad. Sci. USA, 74(1):384 - 386.
  11. Demongeot, J. (2009). Biological boundaries and biological age. Acta Biotheoretica, 57(4):397 - 418.
  12. Deshpande, J. and Purohit, S. (2005). volume 11 of Quality, Reliability and Engineering Statistics. World Scientific, Hackensack, NJ.
  13. Doubal, S. (1982). Theory of reliability, biological systems and aging. Mech. Aging and Dev., 18(4):339 - 353.
  14. Eakin, T. (1994). Intrinsic time scaling in survival analysis: Application to biological populations. Bull. Math. Biol., 56(6):1121 - 1141.
  15. Eakin, T. and Witten, T. (1995a). A gerontological distance metric for analysis of survival dynamics. Mech. Aging and Dev., 78:85 - 101.
  16. Eakin, T. and Witten, T. (1995b). How square is the survival curve of a given species? Experimental Gerontology, 30(1):33 - 64.
  17. Elandt-Johnson, R. and Johnson, N. (1999). Survival Models and Data Analysis.
  18. Hoel, D., Carnes, B., Dedrick, R., Fry, R., Grahn, D., Griffith, W., Groer, P., and Preston, R. J. (2005). Extrapolation of radiation-induced cancer risks from nonhuman experiment systems to humans. Technical report, National Council on Radiation Protection and Measurements, Bethesda, MD.
  19. Kalbfleish, J. D. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data. John Wiley and Sons, New York, N.Y.
  20. Keyfitz, N. (1977). Applied Mathematical Demography. John Wiley and Sons, Inc., New York, N.Y.
  21. Lawless, J. (2003). Statistical Models and Methods for Lifetime Data. John Wiley and Sons, Inc., Hoboken, N.J.
  22. Managbanag, J., Witten, T., Bonchev, D., Fox, L., Tsuchiya, M., Kennedy, B., and Kaeberlein, M. (2008). Shortest-path network analysis is a useful approach towards identifying genetic determinants of longevity. PLoS ONE, 3(11):e3802.
  23. Nagnur, D. (1986). Rectangularization of the survival curve and entropy: The Canadian experience 1921 - 1981. Canadian Studies in Population, 13(1):83 - 102.
  24. Neumann, J. V. (1956). Probabilistic logics and the synthesis of reliable organisms from unreliable components. Princeton University Press, Princeton, N.J.
  25. Pflaumer, P. (2010). Measuring the rectangularization of lifetables using the Gompertz distribution. Vancouver, Canada. Proc. Joint Statistical Meetings, Social Statistics Section.
  26. Roberts, C. (2010). Ordinary Differential Equations: Applications, Models and Computing. Chapman and Hall/CRC Press, Boca Raton, FL.
  27. Thomas, G. (1968). Calculus and Analytic Geometry. Addison Wesley Publishing, Co., Reading, MA.
  28. Wimble, C. and Witten, T. (2014). Modeling aging networks: Part2 - Applications. Karger Press, New York, N.Y.
  29. Witten, T. (1981). Investigating the aging mammalian system: cellular levels and beyond. In Proc. 25th Annual Meeting of the Society for General Systems Research, pages 309 - 315.
  30. Witten, T. (1983). On stochasticity in the von Foerster hyperbolic partial differential equation system. Further applications to the modeling of an asynchronously dividing cellular system. Computers and Mathematics with Applications, 9(3):447 - 458.
  31. Witten, T. (1984a). A return to time, cells, systems and aging: II. Relational and reliability theoretic aspects of senescence in mammalian systems. Mech. Aging and Dev., 27:323 - 340.
  32. Witten, T. (1984b). Mathematics of molecular aging. Academic Press, New York, N.Y.
  33. Witten, T. (1984c). Time aberration in living organisms: stochastic effects. Math. Modeling, 5:97 - 101.
  34. Witten, T. (1989). Quantifying the concepts of rate and acceleration/deceleration of aging. Growth, Development and Aging, 53:7 - 16.
  35. Witten, T. (2007). (M,R)-systems, (P,M,C)-nets, hierarchical decay and biological aging: Reminiscences of Robert Rosen. Chemistry and Biodiversity, 4(10):2332 - 2344.
  36. Witten, T. (2014). Modeling aging networks: Part 1 - Introduction to the theory. Karger Press, New York, N.Y.
  37. Witten, T. and Bonchev, D. (2007). Predicting aging/longevity-related genes in the nematode C. elegans. Chemistry and Biodiversity, 4:2639 - 2655.
  38. Witten, T. and Eakin, T. (1997). Multiphasic models of survival: Background and early developments. Experimental Gerontology, 32(2):259 - 285.
  39. Yu, B., Masoro, E., Murata, I., Bertrand, H., and Yu, F. (1982). Lifespan study of SPF Fisher 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J. Gerontology, 37(2):130 - 141.
Download


Paper Citation


in Harvard Style

Witten T. (2016). Hierarchical Complexity and Aging - Towards a Physics of Aging . In Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS, ISBN 978-989-758-181-6, pages 143-154. DOI: 10.5220/0005855901430154


in Bibtex Style

@conference{complexis16,
author={Tarynn M. Witten},
title={Hierarchical Complexity and Aging - Towards a Physics of Aging},
booktitle={Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,},
year={2016},
pages={143-154},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005855901430154},
isbn={978-989-758-181-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,
TI - Hierarchical Complexity and Aging - Towards a Physics of Aging
SN - 978-989-758-181-6
AU - Witten T.
PY - 2016
SP - 143
EP - 154
DO - 10.5220/0005855901430154