Towards Keyword-based Pull Recommendation Systems

María del Carmen Rodríguez-Hernández, Sergio Ilarri, Raquel Trillo-Lado, Francesco Guerra

2016

Abstract

Due to the high availability of data, users are frequently overloaded with a huge amount of alternatives when they need to choose a particular item. This has motivated an increased interest in research on recommendation systems, which filter the options and provide users with suggestions about specific elements (e.g., movies, restaurants, hotels, books, etc.) that are estimated to be potentially relevant for the user. In this paper, we describe and evaluate two possible solutions to the problem of identification of the type of item (e.g., music, movie, book, etc.) that the user specifies in a pull-based recommendation (i.e., recommendation about certain types of items that are explicitly requested by the user). We evaluate two alternative solutions: one based on the use of the Hidden Markov Model and another one exploiting Information Retrieval techniques. Comparing both proposals experimentally, we can observe that the Hidden Markov Model performs generally better than the Information Retrieval technique in our preliminary experimental setup.

References

  1. Adamopoulos, P. and Tuzhilin, A. (2014). Estimating the value of multi-dimensional data sets in context-based recommender systems. In Eighth ACM Conference on Recommender Systems (RecSys). CEUR.
  2. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749.
  3. Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors, Recommender Systems Handbook, pages 217-253. Springer.
  4. Agrawal, S., Chaudhuri, S., and Das, G. (2002). DBXplorer: A system for keyword-based search over relational databases. In 18th International Conference on Data Engineering (ICDE), pages 5-16. IEEE.
  5. Baltrunas, L., Church, K., Karatzoglou, A., and Oliver, N. (2015). Frappe: Understanding the usage and perception of mobile app recommendations in-the-wild. CoRR, abs/1505.03014.
  6. Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., L üke, K.-H., and Schwaiger, R. (2011). InCarMusic: Context-aware music recommendations in a car. In EC-Web, volume 11, pages 89-100. Springer.
  7. Bergamaschi, S., Domnori, E., Guerra, F., Orsini, M., Lado, R. T., and Velegrakis, Y. (2010). Keymantic: Semantic keyword-based searching in data integration systems. Proceedings of the VLDB Endowment, 3(1-2):1637- 1640.
  8. Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., and Velegrakis, Y. (2013). QUEST: A keyword search system for relational data based on semantic and machine learning techniques. Proceedings of the VLDB Endowment, 6(12):1222-1225.
  9. Bergamaschi, S., Guerra, F., Rota, S., and Velegrakis, Y. (2011). A Hidden Markov Model approach to keyword-based search over relational databases. In Jeusfeld, M., Delcambre, L., and Ling, T.-W., editors, Conceptual Modeling-ER 2011 , volume 6998, pages 411-420. Springer.
  10. Chakrabarti, S., Sarawagi, S., and Sudarshan, S. (2010). Enhancing search with structure. IEEE Data Engineering Bulletin, 33(1):3-24.
  11. del Carmen Rodríguez-Hern ández, M. and Ilarri, S. (2015). Pull-based recommendations in mobile environments. Computer Standards & Interfaces.
  12. Forney, J. G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268-278.
  13. Hristidis, V. and Papakonstantinou, Y. (2002). DISCOVER: Keyword search in relational databases. In 28th International Conference on Very Large Data Bases (VLDB), pages 670-681. VLDB Endowment.
  14. Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge University Press, first edition.
  15. Kantor, P. B., Rokach, L., Ricci, F., and Shapira, B. (2011). Recommender Systems Handbook. Springer, New York, USA.
  16. Kos?ir, A., Odic, A., Kunaver, M., Tkalcic, M., and Tasic, J. F. (2011). Database for contextual personalization. Elektrotehnis?ki vestnik, 78(5):270-274.
  17. Levandoski, J. J., Sarwat, M., Eldawy, A., and Mokbel, M. F. (2012). LARS: A location-aware recommender system. In 28th International Conference on Data Engineering (ICDE), pages 450-461. IEEE.
  18. Li, G., Ooi, B. C., Feng, J., Wang, J., and Zhou, L. (2008). EASE: An effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 903-914. ACM.
  19. Lou, H.-L. (1995). Implementing the Viterbi algorithm. IEEE Signal Processing Magazine, 12(5):42-52.
  20. Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286.
  21. Salton, G. and McGill, M. J. (1986). Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA.
  22. Shapira, B. and Zabar, B. (2011). Personalized search: Integrating collaboration and social networks. Journal of the American Society for Information Science and Technology, 62(1):146-160.
  23. Singam, J. A. and Srinivasan, S. (2015). Optimal keyword search for recommender system in Big Data application. ARPN Journal of Engineering and Applied Sciences (ARPN-JEAS), 10(7):3243-3247.
  24. Stanescu, A., Nagar, S., and Caragea, D. (2013). A hybrid recommender system: User profiling from keywords and ratings. In 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), volume 1, pages 73-80. IEEE.
  25. Teorey, T. J., Yang, D., and Fry, J. P. (1986). A logical design methodology for relational databases using the extended entity-relationship model. ACM Computing Surveys, 18(2):197-222.
  26. Vargas-Govea, B., González-Serna, G., and PonceMedellin, R. (2011). Effects of relevant contextual features in the performance of a restaurant recommender system. In Fifth ACM Conference on Recommender Systems (RecSys): Third Workshop on Context-Aware Recommender Systems (CARS), volume 791. CEUR.
  27. Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improving recommendation lists through topic diversification. In14th International Conference on World Wide Web (WWW), pages 22-32. ACM.
  28. Zobel, J. and Moffat, A. (2006). Inverted files for text search engines. ACM Computing Surveys (CSUR), 38(2):6.
Download


Paper Citation


in Harvard Style

Rodríguez-Hernández M., Ilarri S., Trillo-Lado R. and Guerra F. (2016). Towards Keyword-based Pull Recommendation Systems . In Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-187-8, pages 207-214. DOI: 10.5220/0005865402070214


in Bibtex Style

@conference{iceis16,
author={María del Carmen Rodríguez-Hernández and Sergio Ilarri and Raquel Trillo-Lado and Francesco Guerra},
title={Towards Keyword-based Pull Recommendation Systems},
booktitle={Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2016},
pages={207-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005865402070214},
isbn={978-989-758-187-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Towards Keyword-based Pull Recommendation Systems
SN - 978-989-758-187-8
AU - Rodríguez-Hernández M.
AU - Ilarri S.
AU - Trillo-Lado R.
AU - Guerra F.
PY - 2016
SP - 207
EP - 214
DO - 10.5220/0005865402070214