Inferring Causality from Noisy Time Series Data - A Test of Convergent Cross-Mapping

Dan Mønster, Riccardo Fusaroli, Kristian Tylén, Andreas Roepstorff, Jacob F. Sherson

2016

Abstract

Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise injections in intermediate-to-strongly coupled systems could enable more accurate causal inferences. Given the inherent noisy nature of real-world systems, our findings enable a more accurate evaluation of CCM applicability and advance suggestions on how to overcome its weaknesses.

References

  1. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., and Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366(1-2):1-101.
  2. BozorgMagham, A. E., Motesharrei, S., Penny, S. G., and Kalnay, E. (2015). Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System. PLOS ONE, 10(6):e0131226.
  3. Ferretti, A. and Rahman, N. K. (1988). A study of coupled logistic map and its applications in chemical physics. Chemical Physics, 119(2-3):275-288.
  4. Fraser, A. M. and Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2):1134-1140.
  5. Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3):424-438.
  6. Jespersen, S. N. (2013). Personal communication.
  7. Kantz, H. and Schreiber, T. (1997). Nonlinear Time Series Analysis. Cambridge University Press, New York,USA.
  8. Lakoff, G. (2010). Why it Matters How we Frame the Environment. Environmental Communication,4(1):70-81
  9. Lloyd, A. L. (1995). The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. Journal of Theoretical Biology, 173(3):217-230.
  10. Ma, H., Aihara, K., and Chen, L. (2014). Detecting Causality from Nonlinear Dynamics with Short-term Time Series. Scientific Reports, 4:7464.
  11. Marwan, N., Carmen Romano, M., Thiel, M., and Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6):237-329.
  12. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560):459-467.
  13. McBride, J. C., Zhao, X., Munro, N. B., Jicha, G. A., Schmitt, F. A., Kryscio, R. J., Smith, C. D., and Jiang, Y. (2015). Sugihara causality analysis of scalp EEG for detection of early Alzheimer's disease. NeuroImage: Clinical, 7:258-265.
  14. McCracken, J. M. and Weigel, R. S. (2014). Convergent cross-mapping and pairwise asymmetric inference. Physical Review E, 90(6):062903.
  15. Mønster, D. (2013). XMAP. https://github.com/danm0nster /xmap.
  16. Moran, P. (1953). The statistical analysis of the Canadian Lynx cycle. Australian Journal of Zoology, 1(3):291- 298.
  17. Ott, E. (2002). Chaos in Dynamical Systems. Cambridge University Press, Cambridge, U.K. ; New York, 2 edition edition.
  18. Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3:96-146.
  19. Pikovsky, A., Rosenblum, M., and Kurths, J. (2003). Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.
  20. Schreiber, T. (2000). Measuring Information Transfer. Physical Review Letters, 85(2):461-464.
  21. Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., and Munch, S. (2012). Detecting Causality in Complex Ecosystems. Science, 338(6106):496-500.
  22. Sugihara, G. and May, R. M. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344(6268):734-741.
  23. Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 898:366-381.
  24. Webber, C. L. and Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76(2):965-973.
Download


Paper Citation


in Harvard Style

Mønster D., Fusaroli R., Tylén K., Roepstorff A. and Sherson J. (2016). Inferring Causality from Noisy Time Series Data - A Test of Convergent Cross-Mapping . In Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS, ISBN 978-989-758-181-6, pages 48-56. DOI: 10.5220/0005932600480056


in Bibtex Style

@conference{complexis16,
author={Dan Mønster and Riccardo Fusaroli and Kristian Tylén and Andreas Roepstorff and Jacob F. Sherson},
title={Inferring Causality from Noisy Time Series Data - A Test of Convergent Cross-Mapping},
booktitle={Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,},
year={2016},
pages={48-56},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005932600480056},
isbn={978-989-758-181-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,
TI - Inferring Causality from Noisy Time Series Data - A Test of Convergent Cross-Mapping
SN - 978-989-758-181-6
AU - Mønster D.
AU - Fusaroli R.
AU - Tylén K.
AU - Roepstorff A.
AU - Sherson J.
PY - 2016
SP - 48
EP - 56
DO - 10.5220/0005932600480056