Polynomial Matrix SVD Algorithms for Broadband Optical MIMO Systems
Andreas Ahrens, Andre Sandmann, Zeliang Wang, John G. McWhirter
2016
Abstract
Polynomial matrix singular value decomposition (PMSVD) plays a very important role in broadband multiple-input multiple-output (MIMO) systems. It can be used to decompose a broadband MIMO channel matrix in order to recover the transmitted signals corrupted by the channel interference (CI) at the receiver. In this contribution newly developed singular value decomposition (SVD) algorithm for polynomial matrices are analyzed and compared in the application of decomposing optical MIMO channels. The bit-error rate (BER) performance is evaluated and optimized by applying bit and power allocation schemes. For our simulations, the specific impulse responses of the (2x2) MIMO channel, including a 1.4 km multi-mode fiber and optical couplers at both ends, are measured for the operating wavelength of 1576 nm.
References
- Ahrens, A., Sandmann, A., Lochmann, S., and Wang, Z. (2015). Decomposition of Optical MIMO Systems using Polynomial Matrix Factorization. In 2nd IET International Conference on Intelligent Signal Processing (ISP), London (United Kingdom).
- Corr, J., Thompson, K., Weiss, S., McWhirter, J. G., Redif, S., and Proudler, I. K. (2014). Multiple Shift Maximum Element Sequential Matrix Diagonalisation for Parahermitian Matrices. In IEEE SSP Workshop, pages 312-315, Gold Coast (Australia).
- Haykin, S. S. (2002). Adaptive Filter Theory. Prentice Hall, New Jersey.
- Kühn, V. (2006). Wireless Communications over MIMO Channels - Applications to CDMA and Multiple Antenna Systems. Wiley, Chichester.
- McWhirter, J. G. and Baxter, P. D. (2004). A Novel Technique for Broadband Singular Value Decomposition. In 12th Annual ASAP Workshop, MA (USA).
- McWhirter, J. G., Baxter, P. D., Cooper, T., Redif, S., and Foster, J. (2007). An EVD Algorithm for ParaHermitian Polynomial Matrices. IEEE Trans. SP, 55(5):2158-2169.
- Raleigh, G. G. and Cioffi, J. M. (1998). Spatio-Temporal Coding for Wireless Communication. IEEE Transactions on Communications, 46(3):357-366.
- Raleigh, G. G. and Jones, V. K. (1999). Multivariate Modulation and Coding for Wireless Communication. IEEE Journal on Selected Areas in Communications, 17(5):851-866.
- Redif, S., Weiss, S., and McWhirter, J. G. (2015). Sequential Matrix Diagonalization Algorithms for Polynomial EVD of Parahermitian Matrices. IEEE Trans. SP, 61(1):81-89.
- Sandmann, A., Ahrens, A., and Lochmann, S. (2013). Signal Deconvolution of Measured Optical MIMOChannels. In XV International PhD Workshop OWD, pages 278-283, Wisla, Poland.
- Sandmann, A., Ahrens, A., and Lochmann, S. (2014). Experimental Description of Multimode MIMO Channels utilizing Optical Couplers. In ITG-Fachbericht 248: Photonische Netze, pages 125-130, Leipzig (Germany). VDE VERLAG GmbH.
- Sandmann, A., Ahrens, A., and Lochmann, S. (2015a). Modulation-Mode and Power Assignment in SVDAssisted Broadband MIMO Systems using Polynomial Matrix Factorization. Przeglad Elektrotechniczny, 04/2015:10-13.
- Sandmann, A., Ahrens, A., and Lochmann, S. (2015b). Performance Analysis of Polynomial Matrix SVD-based Broadband MIMO Systems. In Sensor Signal Processing for Defence Conference (SSPD), Edinburgh (United Kingdom).
- Sandmann, A., Ahrens, A., and Lochmann, S. (2015c). Resource Allocation in SVD-Assisted Optical MIMO Systems using Polynomial Matrix Factorization. In ITG-Fachbericht 257: Photonische Netze, pages 128- 134, Leipzig (Germany). VDE VERLAG GmbH.
- Sandmann, A., Ahrens, A., and Lochmann, S. (2016). Experimental Evaluation of a (4x4) Multi-Mode MIMO System Utilizing Customized Optical Fusion Couplers. In ITG-Fachbericht 249: Photonische Netze, pages 101-105, Leipzig (Germany). VDE VERLAG GmbH.
- Singer, A. C., Shanbhag, N. R., and Bae, H.-M. (2008). Electronic Dispersion Compensation- An Overwiew of Optical Communications Systems. IEEE Signal Processing Magazine, 25(6):110-130.
- Ta, C. and Weiss, S. (2007). A Design of Precoding and Equalisation for Broadband MIMO Systems. In Asilomar Conf. Signals, Systems & Computers, pages 1616-1620, Pacific Grove, (CA).
- Tse, D. and Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge, New York.
- Vaidyanathan, P. P. (1993). Multirate Systems and Filter Banks. Prentice Hall, New Jersey.
- Wang, Z., McWhirter, J. G., Corr, J., and Weiss, S. (2015). Multiple Shift Second Order Sequential Best Rotation Algorithm for Polynomial Matrix EVD. In 23rd EUSIPCO, pages 849-853, Nice (France).
- Wang, Z., Sandmann, A., McWhirter, J., and Ahrens, A. (2016). Multiple Shift SBR2 Algorithm for Calculating the SVD of Broadband Optical MIMO Systems. In 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna (Austria).
- Winzer, P. J. and Foschini, G. J. (2011). MIMO Capacities and Outage Probabilities in Spatially Multiplexed Optical Transport Systems. Optics Express, 17(19):16680-16696.
Paper Citation
in Harvard Style
Ahrens A., Sandmann A., Wang Z. and McWhirter J. (2016). Polynomial Matrix SVD Algorithms for Broadband Optical MIMO Systems . In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 3: OPTICS, (ICETE 2016) ISBN 978-989-758-196-0, pages 35-42. DOI: 10.5220/0005949400350042
in Bibtex Style
@conference{optics16,
author={Andreas Ahrens and Andre Sandmann and Zeliang Wang and John G. McWhirter},
title={Polynomial Matrix SVD Algorithms for Broadband Optical MIMO Systems},
booktitle={Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 3: OPTICS, (ICETE 2016)},
year={2016},
pages={35-42},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005949400350042},
isbn={978-989-758-196-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 3: OPTICS, (ICETE 2016)
TI - Polynomial Matrix SVD Algorithms for Broadband Optical MIMO Systems
SN - 978-989-758-196-0
AU - Ahrens A.
AU - Sandmann A.
AU - Wang Z.
AU - McWhirter J.
PY - 2016
SP - 35
EP - 42
DO - 10.5220/0005949400350042