Motion Error Compensation for Quad-rotor Miniature Unmanned Aerial Vehicle SAR Imaging
Song Zhou, Lei Yang, Gang Xu, Guoan Bi
2016
Abstract
Quad-rotor miniature unmanned aerial vehicle (QMUAV) synthetic aperture radar (SAR) is an ultra-small airborne SAR system. Because of lowing flying altitude and small size constraints, the motion errors of QMUAV-SAR are very complicated which introduces difficulty to the QMUAV-SAR imaging processing. To deal with this problem, an effective motion compensation approach for QMUAV-SAR is proposed. By establishing the relationship between the motion errors and the Doppler parameters of SAR echoes, the motion errors of QMUAV platform are extracted from the estimated Doppler rates. After the majority of the motion error being properly compensated, phase gradient autofocusing (PGA) is employed to estimate and compensate the residual phase errors to further improve the focusing quality of the SAR image. Experimental results are provided and the image quality is evaluated to demonstrate the ability of achieving well focused image and high spacial resolutions of the proposed method.
References
- Bao, M., Xing, M., and Li, Y. (2012). Chirp scaling algorithm for geo sar based on fourth-order range equation. Electronics letters, 48(1):41-42.
- Carrara, W. G., Goodman, R. S., and Majewski, R. M. (1995). Spotlight synthetic aperture radar- signal processing algorithms(book). Norwood, MA: Artech House, 1995.
- Coker, J. and Tewfik, A. (2011). Performance synthesis of uav trajectories in multistatic sar. Aerospace and Electronic Systems, IEEE Transactions on, 47(2):848- 863.
- Cumming, I. G. and Wong, F. H.-c. (2005). Digital processing of synthetic aperture radar data: algorithms and implementation. Artech house.
- De Macedo, K. A. C., Scheiber, R., and Moreira, A. (2008). An autofocus approach for residual motion errors with application to airborne repeat-pass sar interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 46(10):3151-3162.
- Desai, M. D. and Jenkins, W. K. (1992). Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. Image Processing, IEEE Transactions on, 1(4):505-517.
- Dydek, Z., Annaswamy, A., and Lavretsky, E. (2013). Adaptive control of quadrotor uavs: A design trade study with flight evaluations. Control Systems Technology, IEEE Transactions on, 21(4):1400-1406.
- Huang, L., Qiu, X., Hu, D., and Ding, C. (2011). Focusing of medium-earth-orbit sar with advanced nonlinear chirp scaling algorithm. Geoscience and Remote Sensing, IEEE Transactions on, 49(1):500-508.
- Lara, D., Romero, G., Sanchez, A., Lozano, R., and Guerrero, A. (2010). Robustness margin for attitude control of a four rotor mini-rotorcraft: Case of study. Mechatronics, 20(1):143-152.
- Liao, Y., Xing, M.-d., Zhang, L., and Bao, Z. (2013). A novel modified omega-k algorithm for circular trajectory scanning sar imaging using series reversion. EURASIP Journal on Advances in Signal Processing, 2013(1):1-12.
- Moreira, J. (1990). A new method of aircraft motion error extraction from radar raw data for real time motion compensation. Geoscience and Remote Sensing, IEEE Transactions on, 28(4):620-626.
- Munson, D. C., O'Brien, J. D., and Jenkins, W. K. (1983). A tomographic formulation of spotlight-mode synthetic aperture radar. Proceedings of the IEEE, 71(8):917- 925.
- Sun, G., Xing, M., Xia, X.-G., Wu, Y., and Bao, Z. (2013). Robust ground moving-target imaging using derampkeystone processing. Geoscience and Remote Sensing, IEEE Transactions on, 51(2):966-982.
- Wahl, D., Eichel, P., Ghiglia, D., and Jakowatz, C.V., J. (1994). Phase gradient autofocus-a robust tool for high resolution sar phase correction. Aerospace and Electronic Systems, IEEE Transactions on, 30(3):827-835.
- Xing, M., Jiang, X., Wu, R., Zhou, F., and Bao, Z. (2009). Motion compensation for uav sar based on raw radar data. Geoscience and Remote Sensing, IEEE Transactions on, 47(8):2870-2883.
- Xu, G., Xing, M., Zhang, L., and Bao, Z. (2013). Robust autofocusing approach for highly squinted sar imagery using the extended wavenumber algorithm. Geoscience and Remote Sensing, IEEE Transactions on, 51(10):5031-5046.
- Yang, L., Bi, G., Xing, M., and Zhang, L. (2015). Airborne sar moving target signatures and imagery based on lvd. Geoscience and Remote Sensing, IEEE Transactions on, 53(11):5958-5971.
- Yang, L., Xing, M., Wang, Y., Zhang, L., and Bao, Z. (2013). Compensation for the nsrcm and phase error after polar format resampling for airborne spotlight sar raw data of high resolution. Geoscience and Remote Sensing Letters, IEEE, 10(1):165-169.
- Ye, W., Yeo, T. S., and Bao, Z. (1999). Weighted leastsquares estimation of phase errors for sar/isar autofocus. Geoscience and Remote Sensing, IEEE Transactions on, 37(5):2487-2494.
- Zeng, T., Li, Y., Ding, Z., Long, T., Yao, D., and Sun, Y. (2015). Subaperture approach based on azimuthdependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode sar. Geoscience and Remote Sensing, IEEE Transactions on, 53(12):6718-6734.
- Zhang, L., Qiao, Z., Xing, M.-d., Yang, L., and Bao, Z. (2012). A robust motion compensation approach for uav sar imagery. Geoscience and Remote Sensing, IEEE Transactions on, 50(8):3202-3218.
- Zhao, B., Xian, B., Zhang, Y., and Zhang, X. (2015). Nonlinear robust adaptive tracking control of a quadrotor uav via immersion and invariance methodology. Industrial Electronics, IEEE Transactions on, 62(5):2891-2902.
- Zhao, L., Wang, L., Bi, G., and Yang, L. (2014). An autofocus technique for high-resolution inverse synthetic aperture radar imagery. Geoscience and Remote Sensing, IEEE Transactions on, 52(10):6392-6403.
- Zhou, S., Bao, M., Zhou, P., Xing, M.-D., and Bao, Z. (2011). An imaging algorithm for missileborne sar with downward movement based on azimuth nonlinear chirp scaling. Dianzi Yu Xinxi Xuebao(Journal of Electronics and Information Technology), 33(6):1420-1426.
- Zhou, S., Xing, M., Xia, X.-G., Li, Y., Zhang, L., and Bao, Z. (2013). An azimuth-dependent phase gradient autofocus (apga) algorithm for airborne/stationary bisar imagery. Geoscience and Remote Sensing Letters, IEEE, 10(6):1290-1294.
Paper Citation
in Harvard Style
Zhou S., Yang L., Xu G. and Bi G. (2016). Motion Error Compensation for Quad-rotor Miniature Unmanned Aerial Vehicle SAR Imaging . In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016) ISBN 978-989-758-196-0, pages 38-44. DOI: 10.5220/0005952000380044
in Bibtex Style
@conference{sigmap16,
author={Song Zhou and Lei Yang and Gang Xu and Guoan Bi},
title={Motion Error Compensation for Quad-rotor Miniature Unmanned Aerial Vehicle SAR Imaging},
booktitle={Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016)},
year={2016},
pages={38-44},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005952000380044},
isbn={978-989-758-196-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016)
TI - Motion Error Compensation for Quad-rotor Miniature Unmanned Aerial Vehicle SAR Imaging
SN - 978-989-758-196-0
AU - Zhou S.
AU - Yang L.
AU - Xu G.
AU - Bi G.
PY - 2016
SP - 38
EP - 44
DO - 10.5220/0005952000380044