Synthetic Workload Generation of Broadcast Related HEVC Stream Decoding for Resource Constrained Systems

Hashan Roshantha Mendis, Leandro Soares Indrusiak

2016

Abstract

Performance evaluation of platform resource management protocols, require realistic workload models as input to obtain reliable, accurate results. This is particularly important for workloads with large variations, such as video streams generated by advanced encoders using complex coding tools. In the modern High Efficiency Video Coding (HEVC) standard, a frame is logically subdivided into rectangular coding units. This work presents synthetic HEVC decoding workload generation algorithms classified at the frame and coding unit levels, where a group of pictures is considered as a directed acyclic graph based taskset. Video streams are encoded using a minimum number of reference frames, compatible with low-memory decoders. Characteristic data from several HEVC video streams, is extracted to analyse inter-frame dependency patterns, reference data volume, frame/coding unit decoding times and other coding unit properties. Histograms are used to analyse their statistical characteristics and to fit to known theoretical probability density functions. Statistical properties of the analysed video streams are integrated into two novel algorithms, that can be used to synthetically generate HEVC decoding workloads, with realistic dependency patterns and frame-level properties.

References

  1. Alvarez, M., Salami, E., Ramirez, A., and Valero, M. (2005). A performance characterization of high definition digital video decoding using H.264/AVC, pages 24-33.
  2. Bavier, A. C., Montz, A. B., and Peterson, L. L. (1998). Predicting mpeg execution times. In ACM SIGMETRICS Performance Evaluation Review, pages 131- 140. ACM.
  3. Benmoussa, Y., Boukhobza, J., Senn, E., Hadjadj-Aoul, Y., and Benazzouz, D. (2015). A methodology for performance/energy consumption characterization and modeling of video decoding on heterogeneous soc and its applications. Journal of Systems Architecture, pages 49-70.
  4. Bossen, F., Bross, B., Suhring, K., and Flynn, D. (2012). HEVC complexity and implementation analysis. IEEE TCSTV, 22:1685-1696.
  5. Chi, C. C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., and Schierl, T. (2012). Parallel scalability and efficiency of HEVC parallelization approaches. IEEE TCSVT, 22:1827-1838.
  6. Chi, C. C., Alvarez-Mesa, M., Lucas, J., Juurlink, B., and Schierl, T. (2013). Parallel HEVC decoding on multi and many-core architectures: A power and performance analysis. Journal of Signal Processing Systems, 71:247-260.
  7. Eom, Y., Park, S., Yoo, S., Choi, J. S., and Cho, S. (2015). An analysis of scene change detection in HEVC bitstream. In IEEE ICSC, pages 470-474. IEEE.
  8. Hamidouche, W., Raulet, M., and Deforges, O. (2014). Real time SHVC decoder: Implementation and complexity analysis. In IEEE ICIP, pages 2125-2129.
  9. Holliman, M. and Chen, Y. K. (2003). Mpeg decoding workload characterization. In CAECW Workshop.
  10. Isovic, D., Fohler, G., and Steffens, L. (2003). Timing constraints of MPEG-2 decoding for high quality video: misconceptions and realistic assumptions. In Euromicro Conf. on Real-Time Sys., pages 73-82. IEEE.
  11. Kim, I.-K., Min, J., Lee, T., Han, W.-J., and Park, J. (2012). Block partitioning structure in the HEVC standard. Circuits and Systems for Video Technology, IEEE Transactions on, 22:1697-1706.
  12. Kreku, J., Tiensyrja, K., and Vanmeerbeeck, G. (2010). Automatic workload generation for system-level exploration based on modified GCC compiler. In DATE Conf., pages 369-374.
  13. Krunz, M., Sass, R., and Hughes, H. (1995). Statistical characteristics and multiplexing of MPEG streams. In INFOCOM, pages 455-462. IEEE.
  14. Liu, W., Xu, J., Wu, X., Ye, Y., Wang, X., Zhang, W., Nikdast, M., and Wang, Z. (2011). A noc traffic suite based on real applications. In IEEE ISVLSI.
  15. Mashat, A. S. (1999). VBR MPEG traffic: characterisation, modelling and support over ATM networks. PhD thesis, University of Leeds.
  16. Mendis, H. R. (2015). Analysis data, sourcecode and usage examples of proposed workload generator. http://gdriv.es/hevcanalysisdata.
  17. Mendis, H. R., Audsley, N. C., and Indrusiak, L. S. (2015). Task allocation for decoding multiple hard real-time video streams on homogeneous nocs. In INDIN conf.
  18. Mudholkar, G. S., Srivastava, D. K., and Freimer, M. (1995). The exponentiated weibull family: a reanalysis of the bus-motor-failure data. Technometrics, 37:436-445.
  19. Multicoreware (2015). x265 HEVC encoder/h.265 video codec. http://x265.org/. [Online; accessed 26- October-2015].
  20. Naccari, M., Weerakkody, R., Funnell, J., and Mrak, M. (2015). Enabling ultra high definition television services with the hevc standard: The thira project. In IEEE ICMEW conf.
  21. Opensource (2015). Openhevc HEVC decoder. https://github.com/openhevc/. [Online; accessed 26-October-2015].
  22. Roitzsch, M. and Pohlack, M. (2006). Principles for the prediction of video decoding times applied to MPEG1/2 and MPEG-4 part 2 video. In RTSS conf.
  23. Saponara, S., Denolf, K., Lafruit, G., Blanch, C., and Bormans, J. (2004). Performance and complexity coevaluation of the advanced video coding standard for cost-effective multimedia communications. EURASIP J. Appl. Signal Process., pages 220-235.
  24. Soares, A. B., Bonatto, A. C., and Susin, A. A. (2013). Development of a soc for digital television set-top box: Architecture and system integration issues. International Journal of Reconfigurable Computing.
  25. Sullivan, G., Ohm, J., Han, W.-J., and Wiegand, T. (2012). Overview of the high efficiency video coding (HEVC) standard. IEEE TCSVT journal, 22(12):1649-1668.
  26. Tanwir, S. and Perros, H. (2013). A survey of VBR video traffic models. IEEE Communications Surveys Tutorials, pages 1778-1802.
  27. Wu, H., Claypool, M., and Kinicki, R. (2005). Guidelines for selecting practical MPEG group of pictures. In In Proceedings of IASTED (EuroIMSA) conf.
  28. Yuan, W. and Nahrstedt, K. (2002). Integration of dynamic voltage scaling and soft real-time scheduling for open mobile systems. In NOSSDAV workshop.
  29. Zach, O. and Slanina, M. (2014). A comparison of H.265/HEVC implementations. In ELMAR, 2014.
Download


Paper Citation


in Harvard Style

Mendis H. and Indrusiak L. (2016). Synthetic Workload Generation of Broadcast Related HEVC Stream Decoding for Resource Constrained Systems . In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016) ISBN 978-989-758-196-0, pages 52-64. DOI: 10.5220/0005953200520064


in Bibtex Style

@conference{sigmap16,
author={Hashan Roshantha Mendis and Leandro Soares Indrusiak},
title={Synthetic Workload Generation of Broadcast Related HEVC Stream Decoding for Resource Constrained Systems},
booktitle={Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016)},
year={2016},
pages={52-64},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005953200520064},
isbn={978-989-758-196-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016)
TI - Synthetic Workload Generation of Broadcast Related HEVC Stream Decoding for Resource Constrained Systems
SN - 978-989-758-196-0
AU - Mendis H.
AU - Indrusiak L.
PY - 2016
SP - 52
EP - 64
DO - 10.5220/0005953200520064