Nonlinear Second Cumulant/H-infinity Control with Multiple Decision Makers
Chukwuemeka Aduba
2016
Abstract
This paper studies a second cumulant/h-infinity control problem with multiple players for a nonlinear stochastic system on a finite-horizon. The second cumulant/h-infinity control problem, which is a generalization of the higher-order multi-objective control problem, involves a control method with multiple performance indices. The necessary condition for the existence of Nash equilibrium strategies for the second cumulant/h-infinity control problem is given by the coupled Hamilton-Jacobi-Bellman (HJB) equations. In addition, a threeplayer Nash strategy is derived for the second cumulant/h-infinity control problem. A simulation example is given to illustrate the application of the proposed theoretical formulations.
References
- Aduba, C. and Won, C.-H. (2015). Two-Player Ad Hoc Output-Feedback Cumulant Game Control. In Proceedings of the 12th International Conference On Informatics in Control, Automation and Robotics, pages 53-59, INSTICC, IFAC, Colmar, Alsace, France.
- Al'brekht, E. G. (1961). On the Optimal Stabilization of Nonlinear Systems. Journal of Applied Mathematics and Mechanics, 25(5):836-844.
- Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. John Wiley & Sons Inc., New York, NY.
- Basar, T. and Olsder, G. J. (1999). Dynamic Noncooperative Game Theory. SIAM, Philadelphia, PA.
- Bauso, D., Giarré, L., and Pesenti, R. (2008). Consensus in non-cooperative dynamic games: A multiretailer inventory application. IEEE Transactions on Automatic Control, 53(4):998-1003.
- Beard, R. W., Saridis, G. N., and Wen, J. T. (1998). Approximate Solutions to the Time-Invariant HamiltonJacobi-Bellman Equation. PMM - Journal of Optimization Theory and Applications, 96(3):589-626.
- Bernstein, D. S. and Hassas, W. M. (1989). LQG Control with an H8 Performance Bound: A Riccati Equation Approach. IEEE Transactions on Automatic Control, 34(3):293-305.
- Charilas, D. E. and Panagopoulos, A. D. (2010). A survey on game theory applications in wireless networks. Computer Networks, 54(18):3421-3430.
- Chen, T., Lewis, F. L., and Abu-Khalaf, M. (2007). A Neural Network Solution for Fixed-Final Time Optimal Control of Nonlinear Systems. Automatica, 43(3):482-490.
- Finlayson, B. A. (1972). The Method of Weighted Residuals and Variational Principles. Academic Press, New York, NY.
- Fleming, W. H. and Rishel, R. W. (1975). Deterministic and Stochastic Optimal Control. Springer-Verlag, New York, NY.
- Kappen, H. J. (2005). A Linear Theory for Control of Nonlinear Stochastic Systems. Physical Review Letters, 95(20).
- Lee, J., Won, C., and Diersing, R. (2010). Two Player Statistical Game with Higher Order Cumulants. In Proc. of the American Control Conference, pages 4857- 4862, Baltimore, MD.
- Limebeer, D. J. N., Anderson, B. D. O., and Hendel, D. (1994). A Nash Game Approach to Mixed H2/H8 control. IEEE Transactions on Automatic Control, 39(1):69-82.
- Sain, M. K. (1966). Control of Linear Systems According to the Minimal Variance Criterion-A New Approach to the Disturbance Problem. IEEE Transactions on Automatic Control, AC-11(1):118-122.
- Sain, M. K. and Liberty, S. R. (1971). Performance Measure Densities for a Class of LQG Control Systems. IEEE Transactions on Automatic Control, AC-16(5):431- 439.
- Sain, M. K., Won, C.-H., Spencer, Jr., B. F., and Liberty, S. R. (2000). Cumulants and risk-sensitive control: A cost mean and variance theory with application to seismic protection of structures. In Filar, J., Gaitsgory, V., and Mizukami, K., editors, Advances in Dynamic Games and Applications, volume 5 of Annals of the International Society of Dynamic Games, pages 427- 459. Birkhuser Boston.
- Smith, P. J. (1995). A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice Versa. The American Statistician, (49):217-219.
- Song, W. and Dyke, S. J. (2011). Application of Pseudospectral Method in Stochastic Optimal Control of Nonlinear Structural Systems. In Proc. of the American Control Conference, pages 4857-4862, San Francisco, CA.
- Won, C.-H., Diersing, R. W., and Kang, B. (2010). Statistical Control of Control-Affine Nonlinear Systems with Nonquadratic Cost Function: HJB and Verification Theorems. Automatica, 46(10):1636-1645.
Paper Citation
in Harvard Style
Aduba C. (2016). Nonlinear Second Cumulant/H-infinity Control with Multiple Decision Makers . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-198-4, pages 31-37. DOI: 10.5220/0005955400310037
in Bibtex Style
@conference{icinco16,
author={Chukwuemeka Aduba},
title={Nonlinear Second Cumulant/H-infinity Control with Multiple Decision Makers},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2016},
pages={31-37},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005955400310037},
isbn={978-989-758-198-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Nonlinear Second Cumulant/H-infinity Control with Multiple Decision Makers
SN - 978-989-758-198-4
AU - Aduba C.
PY - 2016
SP - 31
EP - 37
DO - 10.5220/0005955400310037