Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping

Björn Zeise, Bernardo Wagner

2016

Abstract

Many mobile robots nowadays use thermal imaging cameras (TICs) in order to enhance the environment model that is created during exploration tasks. In conventional thermography, thermal images always have to be carefully revised by human operators, which is not practicable in autonomous applications. Unknown surface emissivities are the main source of misinterpretations in thermal images. In this work, we present two methods dealing with these misinterpretations by exploiting the TIC’s changing point of view. While the first approach classifies the regarded material in order to estimate improved surface temperature values, the second one is capable of detecting and removing thermal reflections. The spatial relationship between the thermal images and the regarded surface is made by using a rigidly mounted sensor stack consisting of a TIC and a 3D laser range finder, whose extrinsic calibration is described. During evaluation, we demonstrate the functionality of both approaches.

References

  1. Agrawal, A., Raskar, R., Nayar, S. K., and Li, Y. (2005). Removing photography artifacts using gradient projection and flash-exposure sampling. ACM Trans. Graph., 24(3):828-835.
  2. Alba, M. I., Barazzetti, L., Scaioni, M., Rosina, E., and Previtali, M. (2011). Mapping infrared data on terrestrial laser scanning 3D models of buildings. Remote Sensing, 3(9):1847-1870.
  3. Aziz, M. Z. and Mertsching, B. (2010). Survivor search with autonomous UGVs using multimodal overt attention. In IEEE Safety Security and Rescue Robotics, pages 1-6, Bremen, Germany.
  4. Borrmann, D., Elseberg, J., and Nüchter, A. (2013). Thermal 3D mapping of building façades. In Lee, S., Cho, H., Yoon, K.-J., and Lee, J., editors, Intelligent Autonomous Systems 12, number 193 in Advances in Intelligent Systems and Computing, pages 173-182. Springer Berlin Heidelberg, Berlin, Heidelberg.
  5. Criminisi, A., Kang, S. B., Swaminathan, R., Szeliski, R., and Anandan, P. (2005). Extracting layers and analyzing their specular properties using epipolar-planeimage analysis. Computer Vision and Image Understanding, 97(1):51-85.
  6. Farid, H. and Adelson, E. H. (1999). Separating reflections and lighting using independent components analysis. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 262- 267, Fort Collins, CO, USA.
  7. Gong, X., Lin, Y., and Liu, J. (2013). 3D LIDAR-camera extrinsic calibration using an arbitrary trihedron. Sensors, 13(2):1902-1918.
  8. Howell, J. R., Siegel, R., and Mengüç, M. P. (2011). Thermal radiation heat transfer. CRC Press, Boca Raton, FL, USA, 5th edition.
  9. Iuchi, T. and Furukawa, T. (2004). Some considerations for a method that simultaneously measures the temperature and emissivity of a metal in a high temperature furnace. Review of Scientific Instruments, 75(12):5326-5332.
  10. Iwasaki, Y., Kawata, S., and Nakamiya, T. (2013). Vehicle detection even in poor visibility conditions using infrared thermal images and its application to road traffic flow monitoring. In Sobh, T. and Elleithy, K., editors, Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering, number 151 in Lecture Notes in Electrical Engineering, pages 997- 1009. Springer New York, New York, NY, USA.
  11. Li, Y. and Brown, M. S. (2013). Exploiting reflection change for automatic reflection removal. In IEEE International Conference on Computer Vision, pages 2432-2439, Sydney, Australia.
  12. Litwa, M. (2010). Influence of angle of view on temperature measurements using thermovision camera. IEEE Sensors Journal, 10(10):1552-1554.
  13. Martiny, M., Schiele, R., Gritsch, M., Schulz, A., and Wittig, S. (1996). In situ calibration for quantitative infrared thermography. In International Conference on Quantitative InfraRed Thermography, pages 3-8, Stuttgart, Germany.
  14. Muniz, P. R., Cani, S. P. N., and Magalhães, R. d. S. (2014). Influence of field of view of thermal imagers and angle of view on temperature measurements by infrared thermovision. IEEE Sensors Journal, 14(3):729-733.
  15. Pandey, G., McBride, J., Savarese, S., and Eustice, R. (2010). Extrinsic calibration of a 3D laser scanner and an omnidirectional camera. IFAC Proceedings Volumes, 43(16):336 - 341.
  16. Planas-Cuchi, E., Chatris, J. M., López, C., and Arnaldos, J. (2003). Determination of flame emissivity in hydrocarbon pool fires using infrared thermography. Fire Technology, 39(3):261-273.
  17. Schechner, Y. Y., Kiryati, N., and Basri, R. (2000). Separation of transparent layers using focus. International Journal of Computer Vision, 39(1):25-39.
  18. Szeliski, R., Avidan, S., and Anandan, P. (2000). Layer extraction from multiple images containing reflections and transparency. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 246- 253, Hilton Head Island, SC, USA.
  19. Vidas, S., Moghadam, P., and Bosse, M. (2013). 3D thermal mapping of building interiors using an RGB-D and thermal camera. In IEEE International Conference on Robotics and Automation, pages 2311-2318, Karlsruhe, Germany.
  20. Vollmer, M., Henke, S., Karstädt, D., Möllmann, K. P., and Pinno, F. (2004). Identification and suppression of thermal reflections in infrared thermal imaging. In InfraMation Proceedings, volume 5, pages 287-298, Las Vegas, NV, USA.
  21. Zeise, B., Kleinschmidt, S. P., and Wagner, B. (2015). Improving the interpretation of thermal images with the aid of emissivity's angular dependency. In IEEE International Symposium on Safety, Security, and Rescue Robotics, pages 1-8, West Lafayette, IN, USA.
  22. Zhang, Q. and Pless, R. (2004). Extrinsic calibration of a camera and laser range finder (improves camera calibration). In IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3, pages 2301- 2306, Sendai, Japan.
  23. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334.
Download


Paper Citation


in Harvard Style

Zeise B. and Wagner B. (2016). Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 158-165. DOI: 10.5220/0005955801580165


in Bibtex Style

@conference{icinco16,
author={Björn Zeise and Bernardo Wagner},
title={Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={158-165},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005955801580165},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping
SN - 978-989-758-198-4
AU - Zeise B.
AU - Wagner B.
PY - 2016
SP - 158
EP - 165
DO - 10.5220/0005955801580165