Recursive Total Variation Filtering Based 3D Fusion

M. A. A. Rajput, E. Funk, A. Börner, O. Hellwich

2016

Abstract

3D reconstruction from mobile image sensors is crucial for many offline-inspection and online robotic application. While several techniques are known today to deliver high accuracy 3D models from images via offline-processing, 3D reconstruction in real-time remains a major goal still to achieve. This work focuses on incremental 3D modeling from error prone depth image data, since standard 3D fusion techniques are tailored on accurate depth data from active sensors such as the Kinect. Imprecise depth data is usually provided by stereo camera sensors or simultaneous localization and mapping (SLAM) techniques. This work proposes an incremental extension of the total variation (TV) filtering technique, which is shown to reduce the errors of the reconstructed 3D model by up to 77% compared to state of the art techniques.

References

  1. (2014). ATAP Project Tango Googl. http://www.google. com/atap/projecttango/. Accessed: 2015-11-22.
  2. Baumbach, D. G. D. and Zuev, S. (2014). Stereo-VisionAided Inertial Navigation for Unknown Indoor and Outdoor Environments. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014 . IEEE.
  3. Chen, J., Bautembach, D., and Izadi, S. (2013). Scalable real-time volumetric surface reconstruction. ACM Trans. Graph., 32(4):113:1-113:16.
  4. Christopher Urmson et. al (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics Special Issue on the 2007 DARPA Urban Challenge, Part I, 25(8):425-466.
  5. Curless, B. and Levoy, M. (1996). A volumetric method for building complex models from range images. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, SIGGRAPH 7896, pages 303-312, New York, NY, USA. ACM.
  6. Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., and Bradski, G. (2006). Self-supervised monocular road detection in desert terrain. In Proceedings of Robotics: Science and Systems, Philadelphia, USA.
  7. Funk, E. and Börner, A. (2016). Infinite 3d modelling volumes. In VISAPP 2016.
  8. Handa, A., Whelan, T., McDonald, J., and Davison, A. J. (2014). A benchmark for rgb-d visual odometry, 3d reconstruction and slam. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 1524-1531. IEEE.
  9. Hicks, S. L., Wilson, I., Muhammed, L., Worsfold, J., Downes, S. M., and Kennard, C. (2013). A depthbased head-mounted visual display to aid navigation in partially sighted individuals. PLoS ONE, 8(7):e67695.
  10. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. (2011). Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In ACM Symposium on User Interface Software and Technology. ACM.
  11. Kähler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P. H. S., and Murray, D. W. (2015). Very High Frame Rate Volumetric Integration of Depth Images on Mobile Device. IEEE Transactions on Visualization and Computer Graphics (Proceedings International Symposium on Mixed and Augmented Reality 2015, 22(11).
  12. Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011). Dtam: Dense tracking and mapping in realtime. In Proceedings of the 2011 International Conference on Computer Vision, ICCV 7811, pages 2320- 2327, Washington, DC, USA. IEEE Computer Society.
  13. Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(14):259 - 268.
  14. Steinbruecker, F., Sturm, J., and Cremers, D. (2014). Volumetric 3d mapping in real-time on a cpu. In Int. Conf. on Robotics and Automation, Hongkong, China.
  15. Stühmer, J., Gumhold, S., and Cremers, D. (2010). Realtime dense geometry from a handheld camera. In Pattern Recognition (Proc. DAGM), pages 11-20, Darmstadt, Germany.
  16. Taneja, A., Ballan, L., and Pollefeys, M. (2013). City-scale change detection in cadastral 3d models using images. In Computer Vision and Pattern Recognition (CVPR), Portland.
Download


Paper Citation


in Harvard Style

Rajput M., Funk E., Börner A. and Hellwich O. (2016). Recursive Total Variation Filtering Based 3D Fusion . In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016) ISBN 978-989-758-196-0, pages 72-80. DOI: 10.5220/0005967700720080


in Bibtex Style

@conference{sigmap16,
author={M. A. A. Rajput and E. Funk and A. Börner and O. Hellwich},
title={Recursive Total Variation Filtering Based 3D Fusion},
booktitle={Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016)},
year={2016},
pages={72-80},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005967700720080},
isbn={978-989-758-196-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 5: SIGMAP, (ICETE 2016)
TI - Recursive Total Variation Filtering Based 3D Fusion
SN - 978-989-758-196-0
AU - Rajput M.
AU - Funk E.
AU - Börner A.
AU - Hellwich O.
PY - 2016
SP - 72
EP - 80
DO - 10.5220/0005967700720080