Near-duplicate Fragments in Simultaneously Captured Videos - A Study on Real-time Detection using CBVIR Approach

Andrzej Sluzek

2016

Abstract

CBVIR approach to video-based surveillance is discussed. The objective is to detect in real time near-duplicates (e.g. similarly-looking objects) simultaneously appearing in concurrently captured/played videos. A novel method of keypoint matching is proposed, based on keypoint descriptions additionally incorporating visual and geometric contexts. Near-duplicate fragments can be identified by keypoint matching only. The analysis of geometric constraints (a bottleneck of typical CBVIR methods for sub-image retrieval) is not required. When the proposed method is fully implemented, high-speed and good performances can be achieved, as preliminarily shown in proof-of-concept experiments. The method is affine-invariant and employs typical keypoint detectors and descriptors (MSER and SIFT) as the low-level mechanisms.

References

  1. Zhao, W-L., Ngo, C-W., 2009. Scale-rotation invariant pattern entropy for keypoint-based near-duplicate detection. IEEE Trans. Image Proc., 18(2): 412-423.
  2. Chum, O., Perdoch, M., Matas, J., 2009. Geometric minhashing: Finding a (thick) needle in a haystack. Proc. IEEE Conf. CVPR'09: 17-24.
  3. Sivic, J., Zisserman. A., 2003. Video Google: A text retrieval approach to object matching in videos. Proc. 9th IEEE Int. Conf. ICCV'03: 1470-1477.
  4. Zhao, W.-L., Ngo, C.-W., Tan, H.-K. and Wu, X., 2007. Near-duplicate keyframe identification with interest point matching and pattern learning. IEEE Trans. Multimedia, 9(5): 1037-1048.
  5. Paradowski, M., Sluzek, A., 2010. Real-time retrieval of near- duplicate fragments in images and video-clips. Proc. ACIVS 2010 (LNCS 6474): 18-29.
  6. Romberg, S., August, M., Ries, Ch.X. and Lienhart, R., 2012. Robust Feature Bundling. Proc. PCM 2012 (LNCS 7674): 45-56.
  7. Tuytelaars, T., Mikolajczyk, K., 2008. Local inavariant feature detectors: A survey, Now Publishers Inc.
  8. Matas, J., Chum, O., Urban, M. and Pajdla, T., 2002. Robust wide baseline stereo from maximally stable extremal regions, Proc. BMVC'02: 384-393.
  9. Kristensen, F., MacLean, W.J., 2007. Real-time extraction of maximally stable extremal regions on an FPGA, Proc. IEEE Symp. ISCAS'07: 165-168.
  10. Salahat, E., Saleh, H., Sluzek, A., Al-Qutayri, M., Mohammed, B., and Ismail, M., 2016. Architecture and method for real-time parallel detection and extraction of maximally stable extremal regions (MSERs), U.S. Patent 9,311,555.
  11. Cornelis, N., Van Gool, L., 2008. Fast scale invariant feature detection and matching on programmable graphics hardware, Proc. IEEE Conf. CVPR'08 Workshop: 1-8, 2008.
  12. Sluzek, A., 2012. Large vocabularies for keypoint-based representation and matching of image patches, Proc. ECCV'12 W&T (LNCS 7583): 229-238.
  13. Suzuki, T., 2012. SIFT-based low complexity keypoint extraction and its real-time hardware implementation for full-HD video, Proc. APSIPA'12 Annual Summit and Conf.: 1-6.
  14. Paschalakis, S., Lee, P. and Bober, M., 2003. An FPGA system for the high speed extraction, normalization and classification of moment descriptors, Proc. 13 Int. Conf. FPL'03 (LNCS 2778): 543-552.
  15. Nister, D., Stewenius, H., 2006. Scalable recognition with a vocabulary tree, Proc. IEEE Conf. CVPR'06: 2161- 2168.
  16. Jegou, H., Douze, M. and Schmid, C., 2010. Improving bag-of-features for large scale image search, Int. J. Comp. Vision 87(3): 316-336.
  17. Schmid, C., Mohr, R., 1997. Local grayvalue invariants for image retrieval. IEEE Trans PAMI 19(5): 530-534.
  18. Sluzek, A., 2014. Extended keypoint description and the corresponding improvements in image retrieval, Proc. ACCV 2014 Workshops, (LNCS 9008): 698-709.
  19. Flusser, J., Suk, T., 1993. Pattern recognition by affine moment invariants, Pattern Recognition 26: 167-174.
  20. Stewenius, H., Gunderson, S., Pilet, J., 2012. Size matters: Exhaustive geometric verification for image retrieval. Proc. ECCV'12 (LNCS 7573): 674-687.
Download


Paper Citation


in Harvard Style

Sluzek A. (2016). Near-duplicate Fragments in Simultaneously Captured Videos - A Study on Real-time Detection using CBVIR Approach . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 232-237. DOI: 10.5220/0005971902320237


in Bibtex Style

@conference{icinco16,
author={Andrzej Sluzek},
title={Near-duplicate Fragments in Simultaneously Captured Videos - A Study on Real-time Detection using CBVIR Approach},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={232-237},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005971902320237},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Near-duplicate Fragments in Simultaneously Captured Videos - A Study on Real-time Detection using CBVIR Approach
SN - 978-989-758-198-4
AU - Sluzek A.
PY - 2016
SP - 232
EP - 237
DO - 10.5220/0005971902320237