Local Ozone Prediction with Hybrid Model

Dejan Gradišar, Boštjan Grašič, Marija Zlata Božnar, Primož Mlakar, Juš Kocijan

2016

Abstract

Tropospheric ozone in high concentrations can cause health problems. A reliable alerting system is needed. In this paper we present the hybrid model that can be used for ozone forecasting in urban microlocations. The hybrid model is combined from meteorological and air-quality models (covering large geographical 3- dimensional space), and empirical model (offering good local forecasts), implemented as a Gaussian-process model. Prediction model for the city of Koper in Slovenia that has Mediterranean climate and problems with the ozone pollution is presented and used for improved one-day-ahead forecasting of the maximum hourly value within each day. The model validation results show that hybrid model improves ozone forecasts and provides better alert systems for the selected location.

References

  1. Al-Alawi, S. M., Abdul-Wahab, S. A., and Bakheit, C. S. (2008). Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone. Environ Modell Softw, 23:396-403.
  2. Í lvarez, M. A., Luengo, D., and Lawrence, N. D. (2009). Latent force models. In 12th Int. Conf. on Artificial Intelligence and Statistics, volume 5, pages 5-9.
  3. AriaNet Srl. and ENEA (2015). Qualearia - forecast system for the air quality in italy and europe. http://www.arianet.eu/QualeAria.
  4. Boz?nar, M. Z., Mlakar, P., and Gras?ic?, B. (2012). Shortterm fine resolution WRF forecast data validation in complex terrain in Slovenia. International journal of environment and pollution, 50(1-4):12-21.
  5. Boz?nar, M. Z., Mlakar, P., Gras?ic?, B., Calori, G., D'Allura, A., and Finardi, S. (2014). Operational background air pollution prediction over Slovenia by QualeAria modelling system - validation. International journal of environment and pollution, 54(2-4):175-183.
  6. Chen, N., Qian, Z., Meng, X., and Nabney, I. (2013). Short-term wind power forecasting using Gaussian processes. In International joint conference on Artificial Intelligence IJCAI'13, pages 1771-1777.
  7. European Parliament and Council of the EU (2010). Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Number L 152. Official Journal of the European Union, Brussels.
  8. Goyal, P. and Kumar, A. (2012). Air quality forecasting throught integrated model using air dispersion model and neural network. In Latest advances in systems science and computational intelligence, pages 219-224. WSEAS.
  9. Gradis?ar, D., Gras?ic?, B., Boz?nar, M., Mlakar, P., and Kocijan, J. (2015). Improved local-ozone forecasting using the integrated model. Technical Report DP - 11958, Jozef Stefan Institute, Ljubljana.
  10. Kocijan, J. (2016). Modelling and Control of Dynamic Systems Using Gaussian Process Models. Springer International Publishing, Cham.
  11. Kocijan, J., Gradis?ar, D., Boz?nar, M. Z., Gras?ic?, B., and Mlakar, P. (2016). On-line algorithm for ground-level ozone prediction with a mobile station. Atmospheric Environment, 131:326-333.
  12. MacKay, D. J. C. (1998). Introduction to Gaussian processes. NATO ASI Series, 168:133-166.
  13. MEIS d.o.o. (2015). KOoreg regional air pollution control prognostic and diagnostic modelling system.
  14. Mlakar, P. and Boz?nar, M. Z. (2011). Advanced air pollution, chapter Artificial neural networks: a useful tool in air pollution and meteorological modelling, pages 495-508. InTech, Rijeka.
  15. Pelliccioni, A. and Tirabassi, T. (2006). Air dispersion model and neural network: A new perspective for integrated models in the simulation of complex situations. Environmental Modelling & Software, 21(4):539-546.
  16. Petelin, D., Grancharova, A., and Kocijan, J. (2013). Evolving Gaussian process models for the prediction of ozone concentration in the air. Simulation Modelling Practice and Theory, 33(1):68-80.
  17. Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.
  18. Schmitt, K., Madsen, J., Anitescu, M., and Negrut, D. (2008). A Gaussian process based approach for handling uncertainty in vehicle dynamics simulation. In International Mechanical Engineering Congress and Exposition (IMECE), volume 11, pages 617-628.
  19. Shi, J. Q. and Choi, T. (2011). Gaussian process regression analysis for functional data. Chapman and Hall/CRC, Taylor & Francis group, Boca Raton, FL.
  20. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, M., Duda, K. G., Huang, X. Y., Wang, W., and Powers, J. G. (2008). A description of the advanced research WRF version 3. Technical report, National Center for Atmospheric Research.
  21. von Stosch, M., Oliveira, R., Peres, J., and de Azevedo, S. F. (2014). Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Computers & Chemical Engineering, 60:86 - 101.
  22. Z?abkar, R., Honzak, L., Skok, G., Forkel, R., Rakovec, J., Ceglar, A., and Z?agar, N. (2015). Evaluation of the high resolution wrf-chem (v3.4.1) air quality forecast and its comparison with statistical ozone predictions. Geoscientific Model Development, 8(7):2119-2137.
  23. Zanini, G., Pignatelli, T., Monforti, F., Vialetto, G., Vitali, L., Brusasca, G., Calori, G., Finardi, S., Radice, P., and Silibello, C. (December, 2005). The MINNI project: An integrated assessment modeling system for policy making. In Proceedings of MODSIM05, International Congress on Modelling and Simulation, Melbourne, Australia.
  24. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A. (2012). Real-time air quality forecasting, part i: History, techniques, and current status. Atmospheric Environment, 60:632 - 655.
Download


Paper Citation


in Harvard Style

Gradišar D., Grašič B., Božnar M., Mlakar P. and Kocijan J. (2016). Local Ozone Prediction with Hybrid Model . In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-199-1, pages 262-269. DOI: 10.5220/0005980002620269


in Bibtex Style

@conference{simultech16,
author={Dejan Gradišar and Boštjan Grašič and Marija Zlata Božnar and Primož Mlakar and Juš Kocijan},
title={Local Ozone Prediction with Hybrid Model},
booktitle={Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2016},
pages={262-269},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005980002620269},
isbn={978-989-758-199-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Local Ozone Prediction with Hybrid Model
SN - 978-989-758-199-1
AU - Gradišar D.
AU - Grašič B.
AU - Božnar M.
AU - Mlakar P.
AU - Kocijan J.
PY - 2016
SP - 262
EP - 269
DO - 10.5220/0005980002620269