Model based Detection and 3D Localization of Planar Objects for Industrial Setups
Basak Sakcak, Luca Bascetta, Gianni Ferretti
2016
Abstract
In this work we present a method to detect and estimate the three-dimensional pose of planar and textureless objects placed randomly on a conveyor belt or inside a bin. The method is based on analysis of single 2D images acquired by a standard camera. The algorithm exploits a template matching method to recognize the objects. A set of pose hypotheses are then refined and, based on a gradient orientation scoring, the best object to be manipulated is selected. The method is flexible and can be used with different objects without changing parameters since it exploits a CAD model as input for template generation. We validated the method using synthetic images. An experimental setup has been also designed using a fixed standard camera to localize planar metal objects in various scenarios.
References
- Barrow, H., Tenenbaum, J., Bolles, R., and Wolf, H. (1977). Parametric correspondence and chamfer matching: two new techniques for image matching. In Proceedings of the 5th international joint conference on Artificial intelligence-Volume 2, pages 659-663. Morgan Kaufmann Publishers Inc.
- Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Computer VisionECCV 2006, pages 404-417. Springer.
- Choi, C., Taguchi, Y., Tuzel, O., Liu, M.-Y., and Ramalingam, S. (2012). Voting-based pose estimation for robotic assembly using a 3d sensor. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 1724-1731. IEEE.
- Cózar, J. R., Guil, N., and Zapata, E. L. (2001). Detection of arbitrary planar shapes with 3d pose. Image and Vision Computing, 19(14):1057-1070.
- Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally: Efficient and robust 3d object recognition. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
- Felzenszwalb, P. and Huttenlocher, D. (2004). Distance transforms of sampled functions. Technical report, Cornell University.
- Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., and Lepetit, V. (2012). Gradient response maps for real-time detection of textureless objects. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):876-888.
- Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T. K., and Chellappa, R. (2012). Fast object localization and pose estimation in heavy clutter for robotic bin picking. The International Journal of Robotics Research, 31(8):951-973.
- Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
- Papazov, C., Haddadin, S., Parusel, S., Krieger, K., and Burschka, D. (2012). Rigid 3d geometry matching for grasping of known objects in cluttered scenes. The International Journal of Robotics Research, page 0278364911436019.
- Pretto, A., Tonello, S., and Menegatti, E. (2013). Flexible 3d localization of planar objects for industrial binpicking with monocamera vision system. In Automation Science and Engineering (CASE), 2013 IEEE International Conference on, pages 168-175. IEEE.
- Schnabel, R., Wessel, R., Wahl, R., and Klein, R. (2008). Shape recognition in 3d point-clouds. In The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, volume 8. Citeseer.
- Shotton, J., Blake, A., and Cipolla, R. (2008). Multiscale categorical object recognition using contour fragments. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(7):1270-1281.
- Skotheim, Ø., Lind, M., Ystgaard, P., and Fjerdingen, S. A. (2012). A flexible 3d object localization system for industrial part handling. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 3326-3333. IEEE.
- Söderberg, R., Nordberg, K., and Granlund, G. (2005). An invariant and compact representation for unrestricted pose estimation. In Pattern Recognition and Image Analysis, pages 3-10. Springer.
- Steger, C. (2002). Occlusion, clutter, and illumination invariant object recognition. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A):345-350.
- Ulrich, M., Wiedemann, C., and Steger, C. (2009). Cadbased recognition of 3d objects in monocular images. In ICRA, volume 9, pages 1191-1198.
- von Gioi, R. G., Jakubowicz, J., Morel, J.-M., and Randall, G. (2008). Lsd: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):722-732.
- Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2):119-152.
Paper Citation
in Harvard Style
Sakcak B., Bascetta L. and Ferretti G. (2016). Model based Detection and 3D Localization of Planar Objects for Industrial Setups . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 360-367. DOI: 10.5220/0005982503600367
in Bibtex Style
@conference{icinco16,
author={Basak Sakcak and Luca Bascetta and Gianni Ferretti},
title={Model based Detection and 3D Localization of Planar Objects for Industrial Setups},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={360-367},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005982503600367},
isbn={978-989-758-198-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Model based Detection and 3D Localization of Planar Objects for Industrial Setups
SN - 978-989-758-198-4
AU - Sakcak B.
AU - Bascetta L.
AU - Ferretti G.
PY - 2016
SP - 360
EP - 367
DO - 10.5220/0005982503600367