The Importance of Increasing Actual INDCs’ Ambitions to Meet The Paris Agreement Temperature Targets - An Innovative Fuzzy Logic Approach to Temperature Control and Climate Assessment using FACTS

Carlos Gay y García, Bernardo A. Bastien Olvera

2016

Abstract

This work presents an alternative assessment of climate projections using FACTS (Bastien and Gay, 2016), based on possible future emissions pathways related to the Intended National Determined Contributions presented in 2015 as part of the Paris Agreement on climate change. Moreover it proposes emission reductions in order to stabilize the climate to the desired levels proposed by the international community. Ultimately, it shows the importance of the emissions pathways that the world could take in the crucial period of time 2020-2030. FACTS uses a fuzzy logic approach to solve this physical problem, aware of it dependence on the complexity of climate diplomacy.

References

  1. AGCEC (2015). Indcs analysis. Australian-German Climate and Energy College.
  2. Baer, P., Athanasiou, T., and Kartha, S. (2009). A 350 ppm emergency pathway. Environmental Institute, Boston, USA, .
  3. Bastien, B. and Gay, C. (2016). Facts: Fuzzy assessment and control for temperature stabilization: Regulating global carbon emissions with a fuzzy approach to climate projections. Submitted to SIMULTECH 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications.
  4. Belenky, M. (2015). Achieving the u.s. 2025 emissions mitigation target. Available at: http:// www.climateadvisers.com/wpcontent/uploads/... 2013/12/US-Achieving-2025-Target May-20151.pdf.
  5. Bossetti, V., Carraro, C., and Tavoni, M. (2010). Alternative paths toward a low carbon world. FEEM Working Paper No. 62.2010.
  6. Vuuren, D. (2010). Multi-gas emission envelopes to meet greenhouse gas concentration targets: Costs versus certainty of limiting temperature increase. Global Environmental Change - Human and Policy Dimensions, 17(2):260-280.
  7. Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., B., C., Criqui, P., Isaac, M., Kitous, A., Kypreos, S., Leimbach, M., Lessmann, K., Magne, B., Scrieciu, S., Turton, H., and van Vuuren, D. (2010). The economics of low stabilization: Model comparison of mitigation strategies and costs. The Energy Journal, 31:11-48.
  8. Garg, A., Shukla, P., and K., B. (2014). India report - alternate development pathways for india: Aligning copenhagen climate change commitments with national energy security and economic development. low climate impact scenarios and the implications of required tight emission control strategies [limits]. Ahmedabad, India: Indian Institute of Management, Ahmedabad, .
  9. IEA (2015). Energy and climate change. International Energy Agency: World Energy Outlook Special Report.
  10. Kitous, K. and Keramidas, K. (2015). Jrc policy brief: Analysis of scenarios integrating the indcs. European Comission.
  11. Meinshausen, M., Raper, S., and Wigley, T. (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, magicc6 - part 1: Model description and calibration. Atmos. Chem. Phys., 11:1417-1456.
  12. Rahmstorf, S. and Coumou, D. (2011). Increase of extreme events in a warming world. Proc. Natl. Ac. Sci., 108.
  13. Riahi, K., A., G., and Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change (Special Issue: Greenhouse Gases - Integrated Assessment), 74(7):887- 935.
  14. Rogelj, J., McCollum, D. L., ONeill, B. C., and Riahi, K. (2013). 2020 emissions levels required to limit warming to below 2c. Nature Climate Change, 3.
  15. Silliman, J., Kharin, V., Zwiers, F., Zhang, X., and Bronaugh, D. (2013). Climate extremes indices in the cmip5 multimodel ensemble: Part2. future climate projections. J. Geophys. Res., 118.
  16. Spencer, T. and Pierfederici, R. (2015). Beyond the numbers: Understanding the transformation induced by indcs. Studies, 5.
  17. UNEP (2010). The emissions gap report. United Nations, .
  18. UNFCC (2015). Paris agreement. Conference of the Parts.
  19. UNFCCC (2010). Cancun agreement. Conference of the Parts.
  20. van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, C., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., S.J., S., and Rose, S. (2011). The representative concentration pathways: an overview. Climate Change, 109:5-31.
Download


Paper Citation


in Harvard Style

Gay y García C. and Bastien Olvera B. (2016). The Importance of Increasing Actual INDCs’ Ambitions to Meet The Paris Agreement Temperature Targets - An Innovative Fuzzy Logic Approach to Temperature Control and Climate Assessment using FACTS . In - MSCCES, (SIMULTECH 2016) ISBN , pages 0-0. DOI: 10.5220/0006014703630367


in Bibtex Style

@conference{mscces16,
author={Carlos Gay y García and Bernardo A. Bastien Olvera},
title={The Importance of Increasing Actual INDCs’ Ambitions to Meet The Paris Agreement Temperature Targets - An Innovative Fuzzy Logic Approach to Temperature Control and Climate Assessment using FACTS},
booktitle={ - MSCCES, (SIMULTECH 2016)},
year={2016},
pages={},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006014703630367},
isbn={},
}


in EndNote Style

TY - CONF
JO - - MSCCES, (SIMULTECH 2016)
TI - The Importance of Increasing Actual INDCs’ Ambitions to Meet The Paris Agreement Temperature Targets - An Innovative Fuzzy Logic Approach to Temperature Control and Climate Assessment using FACTS
SN -
AU - Gay y García C.
AU - Bastien Olvera B.
PY - 2016
SP - 0
EP - 0
DO - 10.5220/0006014703630367