Particle Convergence Expected Time in The PSO Model with Inertia Weight
Krzysztof Trojanowski, Tomasz Kulpa
2016
Abstract
Theoretical properties of particle swarm optimization approach with inertia weight are investigated. Particularly, we focus on the convergence analysis of the expected value of the particle location and the variance of the location. Four new measures of the expected particle convergence time are defined: (1) convergence of the expected location of the particle, (2) the particle location variance convergence and (3-4) their respective weak versions. For the first measure an explicit formula of its upper bound is also given. For the weak versions of the measures graphs of recorded values are presented.
References
- Bonyadi, M. R. and Michalewicz, Z. (2016a). Analysis of stability, local convergence, and transformation sensitivity of a variant of particle swarm optimization algorithm. IEEE T. Evolut. Comput., 20(3):370-385.
- Bonyadi, M. R. and Michalewicz, Z. (2016b). Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. Date of Publication: March 8, 2016.
- Cleghorn, C. W. and Engelbrecht, A. P. (2014). A generalized theoretical deterministic particle swarm model. Swarm Intelligence, 8(1):35-59.
- Cleghorn, C. W. and Engelbrecht, A. P. (2015). Particle swarm variants: standardized convergence analysis. Swarm Intelligence, 9(2):177-203.
- Jiang, M., Luo, Y. P., and Yang, S. Y. (2007). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 102(1):8-16.
- Lehre, P. K. and Witt, C. (2013). Finite First Hitting Time Versus Stochastic Convergence in Particle Swarm Optimisation, pages 1-20. Springer New York.
- Liu, Q. (2015). Order-2 stability analysis of particle swarm optimization. Evol. Comput., 23(2):187-216.
- Poli, R. (2008a). Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. App., 2008:4:1-4:10.
- Poli, R. (2008b). Dynamics and stability of the sampling distribution of particle swarm optimisers via moment analysis. Journal of Artificial Evolution and Applications, 2008(Article ID 761459).
- Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE T. Evolut. Comput., 13(4):712-721.
- Poli, R. and Broomhead, D. (2007). Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation. In GECCO 7807: Proceedings of the 9th annual conference on Genetic and evolutionary computation, volume 1, pages 134-141. ACM Press.
- Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform. Process. Lett., 85(6):317 - 325.
- Trojanowski, K. and Kulpa, T. (2015). Particle convergence time in the PSO model with inertia weight. In Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015) - Volume 1: ECTA, pages 122-130.
- van den Bergh, F. and Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Inform. Sciences, 176(8):937-971.
- Witt, C. (2009). Why standard particle swarm optimisers elude a theoretical runtime analysis. In Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, FOGA 7809, pages 13-20. ACM.
Paper Citation
in Harvard Style
Trojanowski K. and Kulpa T. (2016). Particle Convergence Expected Time in The PSO Model with Inertia Weight . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 69-77. DOI: 10.5220/0006048700690077
in Bibtex Style
@conference{ecta16,
author={Krzysztof Trojanowski and Tomasz Kulpa},
title={Particle Convergence Expected Time in The PSO Model with Inertia Weight},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)},
year={2016},
pages={69-77},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006048700690077},
isbn={978-989-758-201-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)
TI - Particle Convergence Expected Time in The PSO Model with Inertia Weight
SN - 978-989-758-201-1
AU - Trojanowski K.
AU - Kulpa T.
PY - 2016
SP - 69
EP - 77
DO - 10.5220/0006048700690077