Rating Prediction with Contextual Conditional Preferences
Aleksandra Karpus, Tommaso Di Noia, Paolo Tomeo, Krzysztof Goczyla
2016
Abstract
Exploiting contextual information is considered a good solution to improve the quality of recommendations, aiming at suggesting more relevant items for a specific context. On the other hand, recommender systems research still strive for solving the cold-start problem, namely where not enough information about users and their ratings is available. In this paper we propose a new rating prediction algorithm to face the cold-start system scenario, based on user interests model called contextual conditional preferences. We present results obtained with three publicly available data sets in comparison with several state-of-the-art baselines. We show that usage of contextual conditional preferences improves the prediction accuracy, even when all users have provided a few feedbacks, and hence small amount of data is available.
References
- Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors, Handbook on Recommender Systems, pages 217-256. Springer.
- Baltrunas, L. and Amatriain, X. (2009). Towards timedependant recommendation based on implicit feedback. In Proceedings of 1st Workshop on ContextAware Recommender Systems.
- Bernardi, L., Kamps, J., Kiseleva, J., and Mller, M. J. I. (2015). The continuous cold-start problem in ecommerce recommender systems. In Bogers, T. and Koolen, M., editors, CBRecSys@RecSys, volume 1448 of CEUR Workshop Proceedings, pages 30-33. CEUR-WS.org.
- Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole, D. (2004). Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21:135-191.
- Braunhofer, M., Elahi, M., Ricci, F., and Schievenin, T. (2013). Context-aware points of interest suggestion with dynamic weather data management. In Xiang, Z. and Tussyadiah, I., editors, Information and Communication Technologies in Tourism 2014, pages 87-100. Springer International Publishing.
- Costa, H., Furtado, B., Pires, D., Macedo, L., and Cardoso, A. (2012). Context and intention-awareness in pois recommender systems. In Proceedings of 4th Workshop on Context-Aware Recommender Systems.
- de Macedo, A. Q., Marinho, L. B., and Santos, R. L. T. (2015). Context-aware event recommendation in event-based social networks. In Werthner, H., Zanker, M., Golbeck, J., and Semeraro, G., editors, RecSys, pages 123-130. ACM.
- Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge University Press, New York, NY, USA, 1st edition.
- Karpus, A., di Noia, T., Tomeo, P., and Goczyla, K. (2016). Using contextual conditional preferences for recommendation tasks: a case study in the movie domain. Studia Informatica, 37(1):7-18.
- Kosir, A., Odic, A., Kunaver, M., Tkalcic, M., and Tasic, J. F. (2011). Database for contextual personalization. Elektrotehniski vestnik [English print ed.], 78(5):270- 274.
- Kula, M. (2015). Metadata embeddings for user and item cold-start recommendations. In Bogers, T. and Koolen, M., editors, CBRecSys@RecSys, volume 1448 of CEUR Workshop Proceedings, pages 14-21. CEUR-WS.org.
- Lee, J. S. and Lee, J. C. (2007). Context awareness by casebased reasoning in a music recommendation system. In Proceedings of the 4th International Conference on Ubiquitous Computing Systems, UCS'07, pages 45- 58, Berlin, Heidelberg. Springer-Verlag.
- Lombardi, S., Anand, S. S., and Gorgoglione, M. (2009). Context and customer behavior in recommendation. In Proceedings of 1st Workshop on Context-Aware Recommender Systems.
- Odic, A., Tkalcic, M., Tasic, J. F., and Kosir, A. (2013). Predicting and detecting the relevant contextual information in a movie-recommender system. Interacting with Computers, 25(1):74-90.
- Satzger, B., Endres, M., and Kießling, W. (2006). A Preference-Based Recommender System, pages 31- 40. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Stefanidis, K., Pitoura, E., and Vassiliadis, P. (2011). Managing contextual preferences. in Info. Sys, pages 1158-1180.
- Vargas-Govea, B., Gonzalez-Serna, G., and PonceMedellin, R. (2011). Effects of relevant contextual features in the performance of a restaurant recommender system. In Proceedings of 3rd Workshop on Context-Aware Recommender Systems.
Paper Citation
in Harvard Style
Karpus A., Di Noia T., Tomeo P. and Goczyla K. (2016). Rating Prediction with Contextual Conditional Preferences . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016) ISBN 978-989-758-203-5, pages 419-424. DOI: 10.5220/0006083904190424
in Bibtex Style
@conference{kdir16,
author={Aleksandra Karpus and Tommaso Di Noia and Paolo Tomeo and Krzysztof Goczyla},
title={Rating Prediction with Contextual Conditional Preferences},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)},
year={2016},
pages={419-424},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006083904190424},
isbn={978-989-758-203-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)
TI - Rating Prediction with Contextual Conditional Preferences
SN - 978-989-758-203-5
AU - Karpus A.
AU - Di Noia T.
AU - Tomeo P.
AU - Goczyla K.
PY - 2016
SP - 419
EP - 424
DO - 10.5220/0006083904190424