Rating Prediction with Contextual Conditional Preferences

Aleksandra Karpus, Tommaso Di Noia, Paolo Tomeo, Krzysztof Goczyla

2016

Abstract

Exploiting contextual information is considered a good solution to improve the quality of recommendations, aiming at suggesting more relevant items for a specific context. On the other hand, recommender systems research still strive for solving the cold-start problem, namely where not enough information about users and their ratings is available. In this paper we propose a new rating prediction algorithm to face the cold-start system scenario, based on user interests model called contextual conditional preferences. We present results obtained with three publicly available data sets in comparison with several state-of-the-art baselines. We show that usage of contextual conditional preferences improves the prediction accuracy, even when all users have provided a few feedbacks, and hence small amount of data is available.

References

  1. Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors, Handbook on Recommender Systems, pages 217-256. Springer.
  2. Baltrunas, L. and Amatriain, X. (2009). Towards timedependant recommendation based on implicit feedback. In Proceedings of 1st Workshop on ContextAware Recommender Systems.
  3. Bernardi, L., Kamps, J., Kiseleva, J., and Mller, M. J. I. (2015). The continuous cold-start problem in ecommerce recommender systems. In Bogers, T. and Koolen, M., editors, CBRecSys@RecSys, volume 1448 of CEUR Workshop Proceedings, pages 30-33. CEUR-WS.org.
  4. Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole, D. (2004). Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21:135-191.
  5. Braunhofer, M., Elahi, M., Ricci, F., and Schievenin, T. (2013). Context-aware points of interest suggestion with dynamic weather data management. In Xiang, Z. and Tussyadiah, I., editors, Information and Communication Technologies in Tourism 2014, pages 87-100. Springer International Publishing.
  6. Costa, H., Furtado, B., Pires, D., Macedo, L., and Cardoso, A. (2012). Context and intention-awareness in pois recommender systems. In Proceedings of 4th Workshop on Context-Aware Recommender Systems.
  7. de Macedo, A. Q., Marinho, L. B., and Santos, R. L. T. (2015). Context-aware event recommendation in event-based social networks. In Werthner, H., Zanker, M., Golbeck, J., and Semeraro, G., editors, RecSys, pages 123-130. ACM.
  8. Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge University Press, New York, NY, USA, 1st edition.
  9. Karpus, A., di Noia, T., Tomeo, P., and Goczyla, K. (2016). Using contextual conditional preferences for recommendation tasks: a case study in the movie domain. Studia Informatica, 37(1):7-18.
  10. Kosir, A., Odic, A., Kunaver, M., Tkalcic, M., and Tasic, J. F. (2011). Database for contextual personalization. Elektrotehniski vestnik [English print ed.], 78(5):270- 274.
  11. Kula, M. (2015). Metadata embeddings for user and item cold-start recommendations. In Bogers, T. and Koolen, M., editors, CBRecSys@RecSys, volume 1448 of CEUR Workshop Proceedings, pages 14-21. CEUR-WS.org.
  12. Lee, J. S. and Lee, J. C. (2007). Context awareness by casebased reasoning in a music recommendation system. In Proceedings of the 4th International Conference on Ubiquitous Computing Systems, UCS'07, pages 45- 58, Berlin, Heidelberg. Springer-Verlag.
  13. Lombardi, S., Anand, S. S., and Gorgoglione, M. (2009). Context and customer behavior in recommendation. In Proceedings of 1st Workshop on Context-Aware Recommender Systems.
  14. Odic, A., Tkalcic, M., Tasic, J. F., and Kosir, A. (2013). Predicting and detecting the relevant contextual information in a movie-recommender system. Interacting with Computers, 25(1):74-90.
  15. Satzger, B., Endres, M., and Kießling, W. (2006). A Preference-Based Recommender System, pages 31- 40. Springer Berlin Heidelberg, Berlin, Heidelberg.
  16. Stefanidis, K., Pitoura, E., and Vassiliadis, P. (2011). Managing contextual preferences. in Info. Sys, pages 1158-1180.
  17. Vargas-Govea, B., Gonzalez-Serna, G., and PonceMedellin, R. (2011). Effects of relevant contextual features in the performance of a restaurant recommender system. In Proceedings of 3rd Workshop on Context-Aware Recommender Systems.
Download


Paper Citation


in Harvard Style

Karpus A., Di Noia T., Tomeo P. and Goczyla K. (2016). Rating Prediction with Contextual Conditional Preferences . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016) ISBN 978-989-758-203-5, pages 419-424. DOI: 10.5220/0006083904190424


in Bibtex Style

@conference{kdir16,
author={Aleksandra Karpus and Tommaso Di Noia and Paolo Tomeo and Krzysztof Goczyla},
title={Rating Prediction with Contextual Conditional Preferences},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)},
year={2016},
pages={419-424},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006083904190424},
isbn={978-989-758-203-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)
TI - Rating Prediction with Contextual Conditional Preferences
SN - 978-989-758-203-5
AU - Karpus A.
AU - Di Noia T.
AU - Tomeo P.
AU - Goczyla K.
PY - 2016
SP - 419
EP - 424
DO - 10.5220/0006083904190424