Cost Adaptive Window for Local Stereo Matching
J. Navarro, A. Buades
2017
Abstract
We present a novel stereo block-matching algorithm which uses adaptive windows. The shape of the window is selected to minimize the matching cost. Such a window might be the less distorted by the disparity function and thus the optimal one for matching. Moreover, we introduce a coarse-to-fine strategy to limit the number of ambiguous matches and reduce the computational cost. The proposed approach performs as state of the art local matching methods.
References
- Birchfield, S. and Tomasi, C. (1998). A pixel dissimilarity measure that is insensitive to image sampling. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(4):401-406.
- Blanchet, G., Buades, A., Coll, B., Morel, J.-M., and Rougé, B. (2011). Fattening free block matching. Journal of mathematical imaging and vision, 41(1- 2):109-121.
- Bleyer, M., Rhemann, C., and Rother, C. (2011). Patchmatch stereo-stereo matching with slanted support windows. In BMVC, volume 11, pages 1-11.
- Buades, A. and Facciolo, G. (2015). Reliable multiscale and multiwindow stereo matching. SIAM Journal on Imaging Sciences, 8(2):888-915.
- Einecke, N. and Eggert, J. (2010). A two-stage correlation method for stereoscopic depth estimation. In Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on, pages 227-234. IEEE.
- Fusiello, A., Roberto, V., and Trucco, E. (1997). Efficient stereo with multiple windowing. In cvpr, page 858. IEEE.
- Gerrits, M. and Bekaert, P. (2006). Local stereo matching with segmentation-based outlier rejection. In Computer and Robot Vision, 2006. The 3rd Canadian Conference on, pages 66-66. IEEE.
- Hannah, M. J. (1974). Computer matching of areas in stereo images. Technical report, DTIC Document.
- He, K., Sun, J., and Tang, X. (2010). Guided image filtering. In Computer Vision-ECCV 2010 , pages 1-14. Springer.
- Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):328-341.
- Hirschmüller, H., Innocent, P. R., and Garibaldi, J. (2002). Real-time correlation-based stereo vision with reduced border errors. International Journal of Computer Vision, 47(1-3):229-246.
- Hirschmüller, H. and Scharstein, D. (2009). Evaluation of stereo matching costs on images with radiometric differences. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(9):1582-1599.
- Hosni, A., Bleyer, M., and Gelautz, M. (2013). Secrets of adaptive support weight techniques for local stereo matching. Computer Vision and Image Understanding, 117(6):620-632.
- Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(9):920-932.
- Kang, S. B., Szeliski, R., and Chai, J. (2001). Handling occlusions in dense multi-view stereo. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I-103. IEEE.
- Kolmogorov, V. and Zabih, R. (2001). Computing visual correspondence with occlusions using graph cuts. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 2, pages 508-515. IEEE.
- Kowalczuk, J., Psota, E. T., and Perez, L. C. (2013). Realtime stereo matching on cuda using an iterative refinement method for adaptive support-weight correspondences. IEEE transactions on circuits and systems for video technology, 23(1):94-104.
- Lu, J., Yang, H., Min, D., and Do, M. (2013). Patch match filter: Efficient edge-aware filtering meets randomized search for fast correspondence field estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1854-1861.
- Manduchi, R. and Tomasi, C. (1999). Distinctiveness maps for image matching. In iciap, page 26. IEEE.
- Patricio, M. P., Cabestaing, F., Colot, O., and Bonnet, P. (2004). A similarity-based adaptive neighborhood method for correlation-based stereo matching. In Image Processing, 2004. ICIP'04. 2004 International Conference on, volume 2, pages 1341-1344. IEEE.
- Psota, E. T., Kowalczuk, J., Mittek, M., and Perez, L. C. (2015). Map disparity estimation using hidden markov trees. In Proceedings of the IEEE International Conference on Computer Vision, pages 2219- 2227.
- Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. (2011). Fast cost-volume filtering for visual correspondence and beyond. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3017-3024. IEEE.
- Sabater, N., Almansa, A., and Morel, J.-M. (2012). Meaningful matches in stereovision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):930-942.
- Scharstein, D. and Hirschmüller, H. (2014). Middlebury stereo evaluation version 3. http://vision.middlebury.edu/stereo/eval3/.
- Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1-3):7-42.
- Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo matching using belief propagation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(7):787-800.
- Viola, P. and Wells III, W. M. (1997). Alignment by maximization of mutual information. International journal of computer vision, 24(2):137-154.
- Wang, L., Liao, M., Gong, M., Yang, R., and Nister, D. (2006). High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pages 798-805. IEEE.
- Wang, Z.-F. and Zheng, Z.-G. (2008). A region based stereo matching algorithm using cooperative optimization. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE.
- Yoon, K.-J. and Kweon, I. S. (2006). Adaptive supportweight approach for correspondence search. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):650-656.
- Zabih, R. and Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In Computer VisionECCV'94, pages 151-158. Springer.
Paper Citation
in Harvard Style
Navarro J. and Buades A. (2017). Cost Adaptive Window for Local Stereo Matching . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-227-1, pages 369-376. DOI: 10.5220/0006100503690376
in Bibtex Style
@conference{visapp17,
author={J. Navarro and A. Buades},
title={Cost Adaptive Window for Local Stereo Matching},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={369-376},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006100503690376},
isbn={978-989-758-227-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)
TI - Cost Adaptive Window for Local Stereo Matching
SN - 978-989-758-227-1
AU - Navarro J.
AU - Buades A.
PY - 2017
SP - 369
EP - 376
DO - 10.5220/0006100503690376