Geometrical and Visual Feature Quantization for 3D Face Recognition

Walid Hariri, Hedi Tabia, Nadir Farah, David Declercq, Abdallah Benouareth

2017

Abstract

In this paper, we present an efficient method for 3D face recognition based on vector quantization of both geometrical and visual proprieties of the face. The method starts by describing each 3D face using a set of orderless features, and use then the Bag-of-Features paradigm to construct the face signature. We analyze the performance of three well-known classifiers: the Naïve Bayes, the Multilayer perceptron and the Random forests. The results reported on the FRGCv2 dataset show the effectiveness of our approach and prove that the method is robust to facial expression.

References

  1. Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(12):2037-2041.
  2. Alyüz, N., Gökberk, B., and Akarun, L. (2010). Regional registration for expression resistant 3-d face recognition. Information Forensics and Security, IEEE Transactions on, 5(3):425-440.
  3. Ballihi, L., Ben Amor, B., Daoudi, M., Srivastava, A., and Aboutajdine, D. (2012). Boosting 3-d-geometric features for efficient face recognition and gender classification. Information Forensics and Security, IEEE Transactions on, 7(6):1766-1779.
  4. Berretti, S., Amor, B. B., Daoudi, M., and Del Bimbo, A. (2011). 3d facial expression recognition using sift descriptors of automatically detected keypoints. The Visual Computer, 27(11):1021-1036.
  5. Besl, P. J. (2012). Surfaces in range image understanding. Springer Science & Business Media.
  6. Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In Robotics-DL tentative, pages 586- 606. International Society for Optics and Photonics.
  7. Bowyer, K. W., Chang, K., and Flynn, P. (2006). A survey of approaches and challenges in 3d and multi-modal 3d+ 2d face recognition. Computer vision and image understanding, 101(1):1-15.
  8. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5-32.
  9. Chang, K. I., Bowyer, K. W., and Flynn, P. J. (2005). An evaluation of multimodal 2d+ 3d face biometrics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(4):619-624.
  10. Chua, C.-S., Han, F., and Ho, Y.-K. (2000). 3d human face recognition using point signature. In Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on, pages 233-238. IEEE.
  11. Creusot, C., Pears, N., and Austin, J. (2013). A machinelearning approach to keypoint detection and landmarking on 3d meshes. International journal of computer vision, 102(1-3):146-179.
  12. Ding, C. and Tao, D. (2015). Robust face recognition via multimodal deep face representation. arXiv preprint arXiv:1509.00244.
  13. Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., and Slama, R. (2013). 3d face recognition under expressions, occlusions, and pose variations. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(9):2270-2283.
  14. Elaiwat, S., Bennamoun, M., Boussaid, F., and El-Sallam, A. (2014). 3-d face recognition using curvelet local features. Signal Processing Letters, IEEE, 21(2):172- 175.
  15. Faltemier, T. C., Bowyer, K. W., and Flynn, P. J. (2008). A region ensemble for 3-d face recognition. Information Forensics and Security, IEEE Transactions on, 3(1):62-73.
  16. Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Van Gool, L. (2013). Random forests for real time 3d face analysis. International Journal of Computer Vision, 101(3):437-458.
  17. Hariri, W., Tabia, H., Farah, N., Benouareth, A., and Declercq, D. (2016a). 3d face recognition using covariance based descriptors. Pattern Recognition Letters, 78:1-7.
  18. Hariri, W., Tabia, H., Farah, N., Declercq, D., and Benouareth, A. (2016b). Hierarchical covariance description for 3d face matching and recognition under expression variation. In 2016 International Conference on 3D Imaging (IC3D), pages 1-7. IEEE.
  19. Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2011a). A novel geometric facial representation based on multi-scale extended local binary patterns. In Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on, pages 1-7. IEEE.
  20. Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2012). 3-d face recognition using elbp-based facial description and local feature hybrid matching. Information Forensics and Security, IEEE Transactions on, 7(5):1551-1565.
  21. Huang, D., Shan, C., Ardabilian, M., Wang, Y., and Chen, L. (2011b). Local binary patterns and its application to facial image analysis: a survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(6):765-781.
  22. Jafri, R. and Arabnia, H. R. (2009). A survey of face recognition techniques. JIPS, 5(2):41-68.
  23. Jyothi, K. and Prabhakar, C. (2014). Multi modal face recognition using block based curvelet features. International Journal of Computer Graphics & Animation, 4(2):21.
  24. Lei, Y., Bennamoun, M., and El-Sallam, A. A. (2013). An efficient 3d face recognition approach based on the fusion of novel local low-level features. Pattern Recognition, 46(1):24-37.
  25. Lewis, D. D. (1998). Naive (bayes) at forty: The independence assumption in information retrieval. In Machine learning: ECML-98, pages 4-15. Springer.
  26. Luo, J., Geng, S., Xiao, Z., and Xiu, C. (2015). A review of recent advances in 3d face recognition. In Sixth International Conference on Graphic and Image Processing (ICGIP 2014), pages 944303-944303. International Society for Optics and Photonics.
  27. Mishra, B., Fernandes, S. L., Abhishek, K., Alva, A., Shetty, C., Ajila, C. V., Shetty, D., Rao, H., and Shetty, P. (2015). Facial expression recognition using feature based techniques and model based techniques: A survey. In Electronics and Communication Systems (ICECS), 2015 2nd International Conference on, pages 589-594. IEEE.
  28. O'Hara, S. and Draper, B. A. (2011). Introduction to the bag of features paradigm for image classification and retrieval. arXiv preprint arXiv:1101.3354.
  29. Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971-987.
  30. Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., and Worek, W. (2005). Overview of the face recognition grand challenge. In Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on, volume 1, pages 947-954. IEEE.
  31. Sandbach, G., Zafeiriou, S., and Pantic, M. (2012). Local normal binary patterns for 3d facial action unit detection. In Image Processing (ICIP), 2012 19th IEEE International Conference on, pages 1813-1816. IEEE.
  32. Shan, C., Gong, S., and McOwan, P. W. (2009). Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing, 27(6):803-816.
  33. Smeets, D., Keustermans, J., Vandermeulen, D., and Suetens, P. (2013). meshsift: Local surface features for 3d face recognition under expression variations and partial data. Computer Vision and Image Understanding, 117(2):158-169.
  34. Sun, Y., Wang, X., and Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 1891-1898. IEEE.
  35. Tabia, H., Daoudi, M., Colot, O., and Vandeborre, J.-P. (2012). Three-dimensional object retrieval based on vector quantization of invariant descriptors. Journal of Electronic Imaging, 21(2):023011-1.
  36. Tabia, H., Daoudi, M., Vandeborre, J.-P., and Colot, O. (2011). A new 3d-matching method of nonrigid and partially similar models using curve analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):852-858.
  37. Tabia, H. and Laga, H. (2015). Covariance-based descriptors for efficient 3d shape matching, retrieval, and classification. Multimedia, IEEE Transactions on, 17(9):1591-1603.
  38. Tabia, H., Laga, H., Picard, D., and Gosselin, P.-H. (2014). Covariance descriptors for 3d shape matching and retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4185-4192.
  39. Vretos, N., Nikolaidis, N., and Pitas, I. (2011). 3d facial expression recognition using zernike moments on depth images. In Image Processing (ICIP), 2011 18th IEEE International Conference on, pages 773-776. IEEE.
  40. Xu, C., Li, S., Tan, T., and Quan, L. (2009). Automatic 3d face recognition from depth and intensity gabor features. Pattern Recognition, 42(9):1895-1905.
  41. Yang, B. and Chen, S. (2013). A comparative study on local binary pattern (lbp) based face recognition: Lbp histogram versus lbp image. Neurocomputing, 120:365- 379.
Download


Paper Citation


in Harvard Style

Hariri W., Tabia H., Farah N., Declercq D. and Benouareth A. (2017). Geometrical and Visual Feature Quantization for 3D Face Recognition . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 187-193. DOI: 10.5220/0006101701870193


in Bibtex Style

@conference{visapp17,
author={Walid Hariri and Hedi Tabia and Nadir Farah and David Declercq and Abdallah Benouareth},
title={Geometrical and Visual Feature Quantization for 3D Face Recognition},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={187-193},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006101701870193},
isbn={978-989-758-226-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Geometrical and Visual Feature Quantization for 3D Face Recognition
SN - 978-989-758-226-4
AU - Hariri W.
AU - Tabia H.
AU - Farah N.
AU - Declercq D.
AU - Benouareth A.
PY - 2017
SP - 187
EP - 193
DO - 10.5220/0006101701870193