CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells

Junthorn Udorn, Hayashi Sachio, Shengwen Hou, Chaoyang Li, Akimitsu Hatta, Hiroshi Furuta

2017

Abstract

Multi-walled carbon nanotube (MWCNT) forests grown on a stainless steel substrate were used as a photoanode in CdSe/ZnS (core/shell) quantum dot (QD) sensitized solar cells (QDSSCs). QD-treated MWCNTs on the conductive metal stainless substrate showed a higher power conversion efficiency (PCE) of 0.014% than those grown on a doped silicon substrate with a PCE of 0.005% under AM 1.5 sunlight intensity (100 mW/cm2). This higher efficiency can be attributed to the lower sheet resistance of 0.0045 Ω/sq for the metal substrate than the value of 259 Ω/sq for doped silicon. Additionally, the relationship between the reflectance of as-grown CNT and PCE is also examined. QDSSC fabricated from CNT of lower reflectance of 1.9 % at a height of 25 μm showed a better efficiency because the lower reflectance indicates the scattering of light repeatedly into deeper CNT forest resulting in higher absorption which indicates a higher surface area of CNTs to adsorb much amount of QDs on CNT forests, resulting in the higher PCE.

References

  1. Baek, S.-W. et al., 2014. Effect of Core Quantum-dots Size on Power-conversion-efficiency for Silicon Solarcells Implementing Energy-down-shift using CdSe/ZnS Core/Shell Quantum Dots. Nanoscale, 6, pp.12524-12531. Available at: http://pubs.rsc.org/en/ Content/ArticleLanding/2014/NR/C4NR02472A [Accessed August 22, 2014].
  2. Barve, A. V et al., 2012. Effects of contact space charge on the performance of quantum intersubband photodetectors. Applied Physics Letters, 100(19), p.191107.Available at: http://scitation.aip.org/content/ aip/journal/apl/100/19/10.1063/1.4712601.
  3. Beard, M.C., 2011. Multiple exciton generation in semiconductor quantum dots. Journal of Physical Chemistry Letters, 2(11), pp.1282-1288.
  4. Cui, K. et al., 2013. Self-assembled microhoneycomb network of single-walled carbon nanotubes for solar cells. Journal of Physical Chemistry Letters, 4(15), pp.2571-2576. Available at: http://dx.doi.org/ 10.1021/jz401242a.
  5. Dong, P. et al., 2011. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. ACS applied materials & interfaces, 3(8), pp.3157-61. Available at: http://www.ncbi.nlm.nih.gov/pubmed/ 21770421.
  6. Guijarro, N. et al., 2009. CdSe quantum dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment. Journal of Physical Chemistry C, 113(10), pp.4208-4214.
  7. Haremza, J.M. et al., 2002. Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes. Nano Letters, 2(11), pp.1253-1258. Available at: http://pubs.acs.org/doi/abs/10.1021/ nl025799m.
  8. Hickey, S., Riley, D. & Tull, E., 2000. Photoelectrochemical studies of CdS nanoparticle modified electrodes: Absorption and photocurrent investigations. The Journal of Physical Chemistry B, 104(32), pp.7623-7626. Available at: http:// pubs.acs.org/doi/abs/10.1021/jp993858n [Accessed June 26, 2014].
  9. Hoke, E.T. et al., 2012. The role of electron affi nity in determining whether fullerenes catalyze or inhibit photooxidation of polymers for solar cells. Advanced Energy Materials, 2(11), pp.1351-1357.
  10. Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348), pp.56-58. Available at: http:// www.nature.com/doifinder/10.1038/3540560 [Accessed July 10, 2014].
  11. Jeyakumar, R., Maiti, T.K. & Verma, A., 2013. Influence of emitter bandgap on interdigitated point contact back heterojunction (a-Si:H/c-Si) solar cell performance. Solar Energy Materials and Solar Cells, 109, pp.199- 203.
  12. Kang, M.G. et al., 2006. A 4.2% efficient flexible dyesensitized TiO2 solar cells using stainless steel substrate. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 90(5), pp.574-581.
  13. Li, C. et al., 2013. Photovoltaic property of a vertically aligned carbon nanotube hexagonal network assembled with CdS quantum dots. ACS applied materials & interfaces, 5(15), pp.7400-4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23844806.
  14. Li, Y. et al., 2012. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells, 2012, pp.1-6.
  15. Ma, T.L. et al., 2004. Properties of several types of novel counter electrodes for dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 574(1), pp.77-83. Available at: <Go to ISI>:// 000225310800010.
  16. Malara, F. et al., 2011. Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. ACS Applied Materials and Interfaces, 3(9), pp.3625-3632.
  17. Mar, J.D. et al., 2011. Voltage-controlled electron tunneling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell. Journal of Applied Physics, 110(5),p.053110. Available at: http://scitation.aip.org/ content/aip/journal/jap/110/5/10.1063/1.3633216.
  18. Miettunen, K. et al., 2008. Initial Performance of Dye Solar Cells on Stainless Steel Substrates. Journal of Physical Chemistry C, 112(10), pp.4011-4017. Available at: http://pubs.acs.org/cgi-bin/doilookup/ ?10.1021/jp7112957.
  19. Miller, O.D., Yablonovitch, E. & Kurtz, S.R., 2012. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE Journal of Photovoltaics, 2(3), pp.303-311.
  20. Mizuno, K. et al., 2009. A black body absorber from vertically aligned single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 106(15), pp.6044-6047.
  21. Péchy, P. et al., 2001. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2- Based Solar Cells. Journal of the American Chemical Society, 123(8), pp.1613-1624. Available at: http://pubs.acs.org/doi/abs/10.1021/ja003299u.
  22. Peng, T. et al., 2011. Hydrothermal Preparation of Multiwalled Carbon Nanotubes (MWCNTs)/CdS Nanocomposite and Its Efficient Photocatalytic Hydrogen Production under Visible Light Irradiation. Energy & Fuels, 25(5), pp.2203-2210. Available at: http://dx.doi.org/10.1021/ef200369z.
  23. Shabaneh, A.A. et al., 2014. Reflectance Response of Optical Fiber Coated With Carbon Nanotubes for Aqueous Ethanol Sensing. IEEE Photonics Journal, 6(6), p.6802910.
  24. Takahashi, T., 2011. Photoassisted Kelvin probe force microscopy on multicrystalline Si solar cell materials. In Japanese Journal of Applied Physics, 50, p.08LA05.
  25. Tian, J. et al., 2013. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot cosensitized solar cells. Nanoscale, 5(3), pp.936-943. Available at: http://dx.doi.org/10.1039/C2NR32663A.
  26. Udorn, J., Hatta, A. & Furuta, H., 2016. Carbon Nanotube (CNT) Honeycomb Cell Area-Dependent Optical Reflectance. Nanomaterials, 6(11), p.202. Available at: http://www.mdpi.com/2079-4991/6/11/202.
  27. Watanabe, K. et al., 2011. Si/Si 1-xGe x nanopillar superlattice solar cell: A novel nanostructured solar cell for overcoming the Shockley-Queisser limit. In Technical Digest - International Electron Devices Meeting, IEDM, pp. pp: 36.4.1-36.4.4. Available at: http://ieeexplore.ieee.org/document/6131685/
  28. Wei, J. et al., 2014. Modification of carbon nanotubes with 4-mercaptobenzoic acid-doped polyaniline for quantum dot sensitized solar cells. Journal of Materials Chemistry C, 2, pp.4177-4185. Available at: http://xlink.rsc.org/?DOI=c4tc00021h.
  29. Yu, K. et al., 2012. Controllable photoelectron transfer in CdSe nanocrystal-carbon nanotube hybrid structures. Nanoscale, 4(3), pp.742-746. Available at: http://dx.doi.org/10.1039/C2NR11577H.
  30. Yu, Z. & and Louis Brus, 2001. Rayleigh and Raman Scattering from Individual Carbon Nanotube Bundles. The Journal of Physical Chemistry B, 105(6), pp.1123-1134. Available at: http://dx.doi.org/ 10.1021/jp003081u.
  31. Zarazúa, I. et al., 2011. Photovoltaic conversion enhancement of CdSe quantum dot-sensitized TiO 2 decorated with Au nanoparticles and P3OT. Journal of Physical Chemistry C, 115(46), pp.23209-23220.
  32. Zhang, Y. et al., 2009. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology, 20(15), p.155707. Available at: http://stacks.iop.org/0957- 4484/20/i=15/a=155707.
  33. Zhu, H.W. et al., 2008. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology, 19(46), p.5. Available at: <Go to ISI>://000260264000007.
Download


Paper Citation


in Harvard Style

Udorn J., Sachio H., Hou S., Li C., Hatta A. and Furuta H. (2017). CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 158-163. DOI: 10.5220/0006103801580163


in Bibtex Style

@conference{photoptics17,
author={Junthorn Udorn and Hayashi Sachio and Shengwen Hou and Chaoyang Li and Akimitsu Hatta and Hiroshi Furuta},
title={CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={158-163},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006103801580163},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells
SN - 978-989-758-223-3
AU - Udorn J.
AU - Sachio H.
AU - Hou S.
AU - Li C.
AU - Hatta A.
AU - Furuta H.
PY - 2017
SP - 158
EP - 163
DO - 10.5220/0006103801580163