CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells
Junthorn Udorn, Hayashi Sachio, Shengwen Hou, Chaoyang Li, Akimitsu Hatta, Hiroshi Furuta
2017
Abstract
Multi-walled carbon nanotube (MWCNT) forests grown on a stainless steel substrate were used as a photoanode in CdSe/ZnS (core/shell) quantum dot (QD) sensitized solar cells (QDSSCs). QD-treated MWCNTs on the conductive metal stainless substrate showed a higher power conversion efficiency (PCE) of 0.014% than those grown on a doped silicon substrate with a PCE of 0.005% under AM 1.5 sunlight intensity (100 mW/cm2). This higher efficiency can be attributed to the lower sheet resistance of 0.0045 Ω/sq for the metal substrate than the value of 259 Ω/sq for doped silicon. Additionally, the relationship between the reflectance of as-grown CNT and PCE is also examined. QDSSC fabricated from CNT of lower reflectance of 1.9 % at a height of 25 μm showed a better efficiency because the lower reflectance indicates the scattering of light repeatedly into deeper CNT forest resulting in higher absorption which indicates a higher surface area of CNTs to adsorb much amount of QDs on CNT forests, resulting in the higher PCE.
References
- Baek, S.-W. et al., 2014. Effect of Core Quantum-dots Size on Power-conversion-efficiency for Silicon Solarcells Implementing Energy-down-shift using CdSe/ZnS Core/Shell Quantum Dots. Nanoscale, 6, pp.12524-12531. Available at: http://pubs.rsc.org/en/ Content/ArticleLanding/2014/NR/C4NR02472A [Accessed August 22, 2014].
- Barve, A. V et al., 2012. Effects of contact space charge on the performance of quantum intersubband photodetectors. Applied Physics Letters, 100(19), p.191107.Available at: http://scitation.aip.org/content/ aip/journal/apl/100/19/10.1063/1.4712601.
- Beard, M.C., 2011. Multiple exciton generation in semiconductor quantum dots. Journal of Physical Chemistry Letters, 2(11), pp.1282-1288.
- Cui, K. et al., 2013. Self-assembled microhoneycomb network of single-walled carbon nanotubes for solar cells. Journal of Physical Chemistry Letters, 4(15), pp.2571-2576. Available at: http://dx.doi.org/ 10.1021/jz401242a.
- Dong, P. et al., 2011. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. ACS applied materials & interfaces, 3(8), pp.3157-61. Available at: http://www.ncbi.nlm.nih.gov/pubmed/ 21770421.
- Guijarro, N. et al., 2009. CdSe quantum dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment. Journal of Physical Chemistry C, 113(10), pp.4208-4214.
- Haremza, J.M. et al., 2002. Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes. Nano Letters, 2(11), pp.1253-1258. Available at: http://pubs.acs.org/doi/abs/10.1021/ nl025799m.
- Hickey, S., Riley, D. & Tull, E., 2000. Photoelectrochemical studies of CdS nanoparticle modified electrodes: Absorption and photocurrent investigations. The Journal of Physical Chemistry B, 104(32), pp.7623-7626. Available at: http:// pubs.acs.org/doi/abs/10.1021/jp993858n [Accessed June 26, 2014].
- Hoke, E.T. et al., 2012. The role of electron affi nity in determining whether fullerenes catalyze or inhibit photooxidation of polymers for solar cells. Advanced Energy Materials, 2(11), pp.1351-1357.
- Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348), pp.56-58. Available at: http:// www.nature.com/doifinder/10.1038/3540560 [Accessed July 10, 2014].
- Jeyakumar, R., Maiti, T.K. & Verma, A., 2013. Influence of emitter bandgap on interdigitated point contact back heterojunction (a-Si:H/c-Si) solar cell performance. Solar Energy Materials and Solar Cells, 109, pp.199- 203.
- Kang, M.G. et al., 2006. A 4.2% efficient flexible dyesensitized TiO2 solar cells using stainless steel substrate. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 90(5), pp.574-581.
- Li, C. et al., 2013. Photovoltaic property of a vertically aligned carbon nanotube hexagonal network assembled with CdS quantum dots. ACS applied materials & interfaces, 5(15), pp.7400-4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23844806.
- Li, Y. et al., 2012. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells, 2012, pp.1-6.
- Ma, T.L. et al., 2004. Properties of several types of novel counter electrodes for dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 574(1), pp.77-83. Available at: <Go to ISI>:// 000225310800010.
- Malara, F. et al., 2011. Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. ACS Applied Materials and Interfaces, 3(9), pp.3625-3632.
- Mar, J.D. et al., 2011. Voltage-controlled electron tunneling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell. Journal of Applied Physics, 110(5),p.053110. Available at: http://scitation.aip.org/ content/aip/journal/jap/110/5/10.1063/1.3633216.
- Miettunen, K. et al., 2008. Initial Performance of Dye Solar Cells on Stainless Steel Substrates. Journal of Physical Chemistry C, 112(10), pp.4011-4017. Available at: http://pubs.acs.org/cgi-bin/doilookup/ ?10.1021/jp7112957.
- Miller, O.D., Yablonovitch, E. & Kurtz, S.R., 2012. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE Journal of Photovoltaics, 2(3), pp.303-311.
- Mizuno, K. et al., 2009. A black body absorber from vertically aligned single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 106(15), pp.6044-6047.
- Péchy, P. et al., 2001. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2- Based Solar Cells. Journal of the American Chemical Society, 123(8), pp.1613-1624. Available at: http://pubs.acs.org/doi/abs/10.1021/ja003299u.
- Peng, T. et al., 2011. Hydrothermal Preparation of Multiwalled Carbon Nanotubes (MWCNTs)/CdS Nanocomposite and Its Efficient Photocatalytic Hydrogen Production under Visible Light Irradiation. Energy & Fuels, 25(5), pp.2203-2210. Available at: http://dx.doi.org/10.1021/ef200369z.
- Shabaneh, A.A. et al., 2014. Reflectance Response of Optical Fiber Coated With Carbon Nanotubes for Aqueous Ethanol Sensing. IEEE Photonics Journal, 6(6), p.6802910.
- Takahashi, T., 2011. Photoassisted Kelvin probe force microscopy on multicrystalline Si solar cell materials. In Japanese Journal of Applied Physics, 50, p.08LA05.
- Tian, J. et al., 2013. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot cosensitized solar cells. Nanoscale, 5(3), pp.936-943. Available at: http://dx.doi.org/10.1039/C2NR32663A.
- Udorn, J., Hatta, A. & Furuta, H., 2016. Carbon Nanotube (CNT) Honeycomb Cell Area-Dependent Optical Reflectance. Nanomaterials, 6(11), p.202. Available at: http://www.mdpi.com/2079-4991/6/11/202.
- Watanabe, K. et al., 2011. Si/Si 1-xGe x nanopillar superlattice solar cell: A novel nanostructured solar cell for overcoming the Shockley-Queisser limit. In Technical Digest - International Electron Devices Meeting, IEDM, pp. pp: 36.4.1-36.4.4. Available at: http://ieeexplore.ieee.org/document/6131685/
- Wei, J. et al., 2014. Modification of carbon nanotubes with 4-mercaptobenzoic acid-doped polyaniline for quantum dot sensitized solar cells. Journal of Materials Chemistry C, 2, pp.4177-4185. Available at: http://xlink.rsc.org/?DOI=c4tc00021h.
- Yu, K. et al., 2012. Controllable photoelectron transfer in CdSe nanocrystal-carbon nanotube hybrid structures. Nanoscale, 4(3), pp.742-746. Available at: http://dx.doi.org/10.1039/C2NR11577H.
- Yu, Z. & and Louis Brus, 2001. Rayleigh and Raman Scattering from Individual Carbon Nanotube Bundles. The Journal of Physical Chemistry B, 105(6), pp.1123-1134. Available at: http://dx.doi.org/ 10.1021/jp003081u.
- Zarazúa, I. et al., 2011. Photovoltaic conversion enhancement of CdSe quantum dot-sensitized TiO 2 decorated with Au nanoparticles and P3OT. Journal of Physical Chemistry C, 115(46), pp.23209-23220.
- Zhang, Y. et al., 2009. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology, 20(15), p.155707. Available at: http://stacks.iop.org/0957- 4484/20/i=15/a=155707.
- Zhu, H.W. et al., 2008. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology, 19(46), p.5. Available at: <Go to ISI>://000260264000007.
Paper Citation
in Harvard Style
Udorn J., Sachio H., Hou S., Li C., Hatta A. and Furuta H. (2017). CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 158-163. DOI: 10.5220/0006103801580163
in Bibtex Style
@conference{photoptics17,
author={Junthorn Udorn and Hayashi Sachio and Shengwen Hou and Chaoyang Li and Akimitsu Hatta and Hiroshi Furuta},
title={CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={158-163},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006103801580163},
isbn={978-989-758-223-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - CdSe/ZnS (Core/Shell) Quantum Dots Multi-wallled Carbon Nanotubes (MWCNTs) on a Stainless Steel as a Photoanode in Solar Cells
SN - 978-989-758-223-3
AU - Udorn J.
AU - Sachio H.
AU - Hou S.
AU - Li C.
AU - Hatta A.
AU - Furuta H.
PY - 2017
SP - 158
EP - 163
DO - 10.5220/0006103801580163