Rate-Distortion Optimized Wavelet-based Irregular Mesh Coding

Jonas El Sayeh Khalil, Adrian Munteanu, Peter Lambert

2017

Abstract

This work investigates the optimization of mesh quality at lossy rates for a lossless scalable wavelet-based irregular mesh codec. Whereas previously proposed wavelet-based irregular mesh codecs offer coarse-grain resolution scalability, in this paper we propose a coding scheme which enables fine-grain quality scalability. This is done by avoiding the use of geometric data in the encoding process, which reduces dependencies within the data stream and allows for an unrestricted storage and transmission order of wavelet subband bitplanes and connectivity information. This in turn allows us to perform rate-distortion optimization, whereby the subband bitplanes to be encoded are determined by minimizing distortion subject to an overall target bitrate. Experimental results show that the proposed coding approach offers fine-grain quality scalability, achieves optimality in rate-distortion sense and improves compression performance over the state of the art.

References

  1. Andreopoulos, Y., Munteanu, A., Barbarien, J., van der Schaar, M., Cornelis, J., and Schelkens, P. (2004). Inband motion compensated temporal filtering. Signal Process. Image, 19(7):653-673. Special Issue on Subband/Wavelet Interframe Video Coding.
  2. Bjøntegaard, G. (2001). Calculation of average PSNR differences between RD-curves. Technical Report VCEG-M33, ITU-T SG16/Q6, Austin, TX, USA.
  3. Bonneau, G.-P. (1998). Multiresolution analysis on irregular surface meshes. IEEE Trans. Vis. Comput. Graphics, 4(4):365-378.
  4. Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: Measuring error on simplified surfaces. Comput. Graph. Forum, 17(2):167-174.
  5. Denis, L., Satti, S. M., Munteanu, A., Cornelis, J., and Schelkens, P. (2010). Scalable intraband and composite wavelet-based coding of semiregular meshes. IEEE Trans. Multimedia, 12(8):773-789.
  6. El Sayeh Khalil, J., Munteanu, A., Denis, L., Lambert, P., and Van de Walle, R. (2016). Scalable featurepreserving irregular mesh coding. Comput. Graph. Forum.
  7. Hoppe, H. (1996). Progressive meshes. In Proc. 23rd SIGGRAPH Conf. Computer Graphics, pages 99-108.
  8. Khodakovsky, A., Schröder, P., and Sweldens, W. (2000). Progressive geometry compression. In Proc. 27th SIGGRAPH Conf. Computer Graphics and Interactive Techniques, pages 271-278.
  9. Lounsbery, M., DeRose, T. D., and Warren, J. D. (1997). Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph., 16(1):34-73.
  10. Munteanu, A., Cornelis, J., Van der Auwera, G., and Cristea, P. (1999). Wavelet-based lossless compression scheme with progressive transmission capability. Int. J. Imag. Syst. Tech., 10(1):76-85.
  11. Ohm, J. R. (1994). Three-dimensional subband coding with motion compensation. IEEE Trans. Image Process., 3(5):559-571.
  12. Pajarola, R. and Rossignac, J. R. (2000). Compressed progressive meshes. IEEE Trans. Vis. Comput. Graphics, 6(1):79-93.
  13. Payan, F., Roudet, C., and Sauvage, B. (2015). Semi-regular triangle remeshing: A comprehensive study. Comput. Graph. Forum, 34(1):86-102.
  14. Peng, J. and Kuo, C.-C. J. (2005). Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. In Proc. 32nd SIGGRAPH Internat. Conf. Computer Graphics and Interactive Techniques, pages 609-616.
  15. Said, A. and Pearlman, W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol., 6(3):243-250.
  16. Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 29(2):511-546.
  17. Taubman, D. and Zakhor, A. (1994). Multirate 3-D subband coding of video. IEEE Trans. Image Process., 3(5):572-588.
  18. Taubman, D. S. and Marcellin, M. W. (2001). JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell, MA, USA.
  19. Touma, C. and Gotsman, C. (1998). Triangle mesh compression. In Proc. Graphics Interface Conf., pages 26-34.
  20. Valette, S., Chaine, R., and Prost, R. (2009). Progressive lossless mesh compression via incremental parametric refinement. Comput. Graph. Forum, 28(5):1301- 1310.
  21. Valette, S., Kim, Y.-S., Jung, H.-Y., Magnin, I., and Prost, R. (1999). A multiresolution wavelet scheme for irregularly subdivided 3d triangular mesh. In Proc. Internat. Conf. Image Processing, pages 171-174.
  22. Valette, S. and Prost, R. (2004a). Wavelet-based multiresolution analysis of irregular surface meshes. IEEE Trans. Vis. Comput. Graphics, 10(2):113-122.
  23. Valette, S. and Prost, R. (2004b). Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Trans. Vis. Comput. Graphics, 10(2):123-129.
Download


Paper Citation


in Harvard Style

El Sayeh Khalil J., Munteanu A. and Lambert P. (2017). Rate-Distortion Optimized Wavelet-based Irregular Mesh Coding . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 212-219. DOI: 10.5220/0006108602120219


in Bibtex Style

@conference{grapp17,
author={Jonas El Sayeh Khalil and Adrian Munteanu and Peter Lambert},
title={Rate-Distortion Optimized Wavelet-based Irregular Mesh Coding},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={212-219},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006108602120219},
isbn={978-989-758-224-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - Rate-Distortion Optimized Wavelet-based Irregular Mesh Coding
SN - 978-989-758-224-0
AU - El Sayeh Khalil J.
AU - Munteanu A.
AU - Lambert P.
PY - 2017
SP - 212
EP - 219
DO - 10.5220/0006108602120219