Towards Long-term Monitoring of Atrial Fibrillation using Photoplethysmography

Birutė Paliakaitė, Andrius Petrėnas, Jurgita Skibarkienė, Tomas Mickus, Saulius Daukantas, Raimondas Kubilius, Vaidotas Marozas

2017

Abstract

This study investigates the feasibility of long-term monitoring of atrial fibrillation (AF) using wrist-worn device, capable of acquiring photoplethysmogram (PPG) and motion data. Moreover, the performance of AF detectors, initially developed to detect AF in electrocardiogram (ECG) signals, is evaluated on PPG. The study population consisted of 12 patients undergoing cardiac rehabilitation. Based on accelerometer data, 65% of recording time was considered as motion-free, which resulted in 86.8 hours of data with AF and 85.4 hours without. The performance of AF detectors was found to be comparable when both ECG and PPG are used for constructing heart rhythm series. Considering that 2/3 of monitoring time PPG was of satisfactory quality, the wrist-worn device has potential to be applied for long-term mass screening of target population.

References

  1. Bonomi, A. G., Schipper, F., Eerikäinen, L. M., Margarito, J., Aarts, R., Babaeizadeh, S., de Morree, H., and Dekker, L. (2016). Atrial fibrillation detection using photo-plethysmography and acceleration data at the wrist. Computing in Cardiology, 43:277-280.
  2. Bouten, C., Westerterp, K., Verduin, M., and Janssen, J. (1994). Assessment of energy expenditure for physical activity using a triaxial accelerometer. Medicine and Science in Sports and Exercise, 23(1):21-27.
  3. Carpenter, A. and Frontera, A. (2016). Smart-watches: a potential challenger to the implantable loop recorder? Europace, 18(6):791-793.
  4. Chan, P.-H., Wong, C.-K., Poh, Y. C., Pun, L., Leung, W. W.-C., Wong, Y.-F., Wong, M. M.-Y., Poh, M.- Z., Chu, D. W.-S., and Siu, C.-W. (2016). Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting. Journal of the American Heart Association, 5(7).
  5. Dash, S., Chon, K., Lu, S., and Raeder, E. (2009). Automatic real time detection of atrial fibrillation. Annals of Biomedical Engineering, 37:1701-1709.
  6. Haim, M., Hoshen, M., Reges, O., Rabi, Y., Balicer, R., and Leibowitz, M. (2015). Prospective national study of the prevalence, incidence, management and outcome of a large contemporary cohort of patients with incident non-valvular atrial fibrillation. Journal of the American Heart Association, 4(1).
  7. Hindricks, G., Pokushalov, E., Urban, L., Taborsky, M., Kuck, K.-H., Lebedev, D., Rieger, G., Prerfellner, H., and on behalf of the XPECT Trial Investigators (2010). Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation results of the XPECT trial. Circulation: Arrhythmia and Electrophysiology, 3(2):141-147.
  8. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., and Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10(1):156-167.
  9. Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Diener, H.-C., Heidbuchel, H., Hendriks, J., Hindricks, G., Manolis, A. S., Oldgren, J., Popescu, B. A., Schotten, U., Van Putte, B., and Vardas, P. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. European Heart Journal.
  10. Lake, D. E. and Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology - Heart and Circulatory Physiology, 300(1):H319-H325.
  11. Lee, J., Reyes, B., McManus, D., Mathias, O., and Chon, K. (2013). Atrial fibrillation detection using an iPhone 4S. IEEE Transactions on Biomedical Engineering, 60(1):203-206.
  12. Liang, H., Lukkarinen, S., and Hartimo, I. (1997). Heart sound segmentation algorithm based on heart sound envelogram. In Computers in Cardiology 1997, pages 105-108.
  13. Manikandan, M. and Soman, K. (2012). A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control, 7(2):118 - 128.
  14. McManus, D. D., Chong, J. W., Soni, A., Saczynski, J. S., Esa, N., Napolitano, C., Darling, C. E., Boyer, E., Rosen, R. K., Floyd, K. C., and Chon, K. H. (2016). PULSE-SMART: Pulse-based arrhythmia discrimination using a novel smartphone application. Journal of Cardiovascular Electrophysiology, 27(1):51-57.
  15. Petre?nas, A., Marozas, V., and Sörnmo, L. (2015). Lowcomplexity detection of atrial fibrillation in continuous long-term monitoring. Computers in Biology and Medicine, 65:184 - 191.
  16. Sarkar, S., Ritscher, D., and Mehra, R. (2008). A detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Transactions on Biomedical Engineering, 55(3):1219-1224.
  17. Stankevic?ius, D., Petre?nas, A., Solos?enko, A., Grigutis, M., Janus?kevic?ius, T., Rims?evic?ius, L., and Marozas, V. (2016). Photoplethysmography-based system for atrial fibrillation detection during hemodialysis. In XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, pages 79- 82.
  18. Turakhia, M. P., Hoang, D. D., Zimetbaum, P., Miller, J. D., Froelicher, V. F., Kumar, U. N., Xu, X., Yang, F., and Heidenreich, P. A. (2013). Diagnostic utility of a novel leadless arrhythmia monitoring device. The American Journal of Cardiology, 112(4):520 - 524.
  19. Zong, W., Nielsen, L., Gross, B., Brea, J., and Frassica, J. (2016). A practical algorithm to reduce false critical ECG alarms using arterial blood pressure and/or photoplethysmogram waveforms. Physiological Measurement, 37(8):1355-1369.
Download


Paper Citation


in Harvard Style

Paliakaitė B., Petrėnas A., Skibarkienė J., Mickus T., Daukantas S., Kubilius R. and Marozas V. (2017). Towards Long-term Monitoring of Atrial Fibrillation using Photoplethysmography . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 141-146. DOI: 10.5220/0006115601410146


in Bibtex Style

@conference{biosignals17,
author={Birutė Paliakaitė and Andrius Petrėnas and Jurgita Skibarkienė and Tomas Mickus and Saulius Daukantas and Raimondas Kubilius and Vaidotas Marozas},
title={Towards Long-term Monitoring of Atrial Fibrillation using Photoplethysmography},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={141-146},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006115601410146},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - Towards Long-term Monitoring of Atrial Fibrillation using Photoplethysmography
SN - 978-989-758-212-7
AU - Paliakaitė B.
AU - Petrėnas A.
AU - Skibarkienė J.
AU - Mickus T.
AU - Daukantas S.
AU - Kubilius R.
AU - Marozas V.
PY - 2017
SP - 141
EP - 146
DO - 10.5220/0006115601410146