Fast Fingerprint Classification with Deep Neural Networks
Daniel Michelsanti, Andreea-Daniela Ene, Yanis Guichi, Rares Stef, Kamal Nasrollahi, Thomas B. Moeslund
2017
Abstract
Reducing the number of comparisons in automated fingerprint identification systems is essential when dealing with a large database. Fingerprint classification allows to achieve this goal by dividing fingerprints into several categories, but it presents still some challenges due to the large intra-class variations and the small inter-class variations. The vast majority of the previous methods uses global characteristics, in particular the orientation image, as features of a classifier. This makes the feature extraction stage highly dependent on preprocessing techniques and usually computationally expensive. In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage.
References
- Candela, G. T., Grother, P. J., Watson, C. I., Wilkinson, R., and Wilson, C. L. (1995). PCASYS - A patternlevel classification automation system for fingerprints. NIST technical report NISTIR, 5647.
- Cao, K., Pang, L., Liang, J., and Tian, J. (2013). Fingerprint classification by a hierarchical classifier. Pattern Recognition, 46(12):3186-3197.
- Cappelli, R. and Maio, D. (2004). The state of the art in fingerprint classification. In Automatic Fingerprint Recognition Systems, pages 183-205. Springer.
- Cappelli, R., Maio, D., and Maltoni, D. (1999). Fingerprint classification based on multi-space KL. In Proceedings Workshop on Automatic Identification Advances Technologies (AutoID99), pages 117-120.
- Cappelli, R., Maio, D., Maltoni, D., and Nanni, L. (2003). A two-stage fingerprint classification system. In Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications, pages 95-99. ACM.
- Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. In Proceedings of British Machine Vision Conference, pages 1-11.
- Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. 32:647-655.
- Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D., Lopez-Molina, C., García, S., Benítez, J. M., Pagola, M., Barrenechea, E., et al. (2015). A survey of fingerprint classification part I: Taxonomies on feature extraction methods and learning models. Knowledgebased systems, 81:76-97.
- Hertel, L., Barth, E., Kaster, T., and Martinetz, T. (2015). Deep convolutional neural networks as generic feature extractors. In Neural Networks (IJCNN), 2015 International Joint Conference on, pages 1-4. IEEE.
- Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. 37:448-456.
- Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105.
- LeCun, Y., Cortes, C., and Burges, C. J. (1998). The MNIST database of handwritten digits. http://yann. lecun.com/exdb/mnist. Accessed: 01-03-2016.
- Li, J., Yau, W.-Y., and Wang, H. (2008). Combining singular points and orientation image information for fingerprint classification. Pattern Recognition, 41(1):353-366.
- Maltoni, D., Maio, D., Jain, A., and Prabhakar, S. (2009). Handbook of fingerprint recognition. Springer Science & Business Media.
- Mayhew, S. (2015). History of biometrics. http://www. biometricupdate.com/201501/history-of-biometrics. 01/09/2016.
- Nogueira, R., Lotufo, R., and Campos Machado, R. (2016). Fingerprint liveness detection using convolutional neural networks. IEEE Transactions on Information Forensics and Security, 11(6):1206-1213.
- Park, C. H. and Park, H. (2005). Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis. Pattern Recognition, 38(4):495-503.
- Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 806-813.
- Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.
- Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929-1958.
- Tan, X., Bhanu, B., and Lin, Y. (2003). Learning features for fingerprint classification. In International Conference on Audio-and Video-Based Biometric Person Authentication, pages 318-326. Springer.
- Tan, X., Bhanu, B., and Lin, Y. (2005). Fingerprint classification based on learned features. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 35(3):287-300.
- Vedaldi, A. and Lenc, K. (2015). MatConvNet: Convolutional neural networks for MATLAB. In Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, pages 689-692. ACM.
- Watson, C. I. and Wilson, C. L. (1992a). NIST Special Database 4. https://www.nist.gov/srd/nist-specialdatabase-4. Accessed: 01-09-2016.
- Watson, C. I. and Wilson, C. L. (1992b). NIST Special Database 9. https://www.nist.gov/srd/nist-specialdatabase-9. Accessed: 01-09-2016.
- Watson, C. I. and Wilson, C. L. (1993). NIST Special Database 14. https://www.nist.gov/srd/nist-specialdatabase-14. Accessed: 01-09-2016.
- Zhang, Q. and Yan, H. (2004). Fingerprint classification based on extraction and analysis of singularities and pseudo ridges. Pattern Recognition, 37(11):2233- 2243.
Paper Citation
in Harvard Style
Michelsanti D., Ene A., Guichi Y., Stef R., Nasrollahi K. and Moeslund T. (2017). Fast Fingerprint Classification with Deep Neural Networks . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 202-209. DOI: 10.5220/0006116502020209
in Bibtex Style
@conference{visapp17,
author={Daniel Michelsanti and Andreea-Daniela Ene and Yanis Guichi and Rares Stef and Kamal Nasrollahi and Thomas B. Moeslund},
title={Fast Fingerprint Classification with Deep Neural Networks},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={202-209},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006116502020209},
isbn={978-989-758-226-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Fast Fingerprint Classification with Deep Neural Networks
SN - 978-989-758-226-4
AU - Michelsanti D.
AU - Ene A.
AU - Guichi Y.
AU - Stef R.
AU - Nasrollahi K.
AU - Moeslund T.
PY - 2017
SP - 202
EP - 209
DO - 10.5220/0006116502020209